ﻻ يوجد ملخص باللغة العربية
Quasi-Newton techniques approximate the Newton step by estimating the Hessian using the so-called secant equations. Some of these methods compute the Hessian using several secant equations but produce non-symmetric updates. Other quasi-Newton schemes, such as BFGS, enforce symmetry but cannot satisfy more than one secant equation. We propose a new type of quasi-Newton symmetric update using several secant equations in a least-squares sense. Our approach generalizes and unifies the design of quasi-Newton updates and satisfies provable robustness guarantees.
In PDE-constrained optimization, proper orthogonal decomposition (POD) provides a surrogate model of a (potentially expensive) PDE discretization, on which optimization iterations are executed. Because POD models usually provide good approximation qu
Nesterovs well-known scheme for accelerating gradient descent in convex optimization problems is adapted to accelerating stationary iterative solvers for linear systems. Compared with classical Krylov subspace acceleration methods, the proposed schem
This paper presents a finite difference quasi-Newton method for the minimization of noisy functions. The method takes advantage of the scalability and power of BFGS updating, and employs an adaptive procedure for choosing the differencing interval $h
In this paper, we consider stochastic second-order methods for minimizing a finite summation of nonconvex functions. One important key is to find an ingenious but cheap scheme to incorporate local curvature information. Since the true Hessian matrix
This work is concerned with the distributed controllability of the one-dimensional wave equation over non-cylindrical domains. The controllability in that case has been obtained in [Castro-Cindea-Munch, Controllability of the linear one-dimensional w