ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalization of Quasi-Newton Methods: Application to Robust Symmetric Multisecant Updates

57   0   0.0 ( 0 )
 نشر من قبل Lewis Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasi-Newton techniques approximate the Newton step by estimating the Hessian using the so-called secant equations. Some of these methods compute the Hessian using several secant equations but produce non-symmetric updates. Other quasi-Newton schemes, such as BFGS, enforce symmetry but cannot satisfy more than one secant equation. We propose a new type of quasi-Newton symmetric update using several secant equations in a least-squares sense. Our approach generalizes and unifies the design of quasi-Newton updates and satisfies provable robustness guarantees.

قيم البحث

اقرأ أيضاً

252 - Paul Manns , Stefan Ulbrich 2021
In PDE-constrained optimization, proper orthogonal decomposition (POD) provides a surrogate model of a (potentially expensive) PDE discretization, on which optimization iterations are executed. Because POD models usually provide good approximation qu ality only locally, they have to be updated during optimization. Updating the POD model is usually expensive, however, and therefore often impossible in a model-predictive control (MPC) context. Thus, reduced models of mediocre quality might be accepted. We take the view of a simplified Newton method for solving semilinear evolution equations to derive an algorithm that can serve as an offline phase to produce a POD model. Approaches that build the POD model with impulse response snapshots can be regarded as the first Newton step in this context. In particular, POD models that are based on impulse response snapshots are extended by adding a second simplified Newton step. This procedure improves the approximation quality of the POD model significantly by introducing a moderate amount of extra computational costs during optimization or the MPC loop. We illustrate our findings with an example satisfying our assumptions.
137 - Tao Hong , Irad Yavneh 2021
Nesterovs well-known scheme for accelerating gradient descent in convex optimization problems is adapted to accelerating stationary iterative solvers for linear systems. Compared with classical Krylov subspace acceleration methods, the proposed schem e requires more iterations, but it is trivial to implement and retains essentially the same computational cost as the unaccelerated method. An explicit formula for a fixed optimal parameter is derived in the case where the stationary iteration matrix has only real eigenvalues, based only on the smallest and largest eigenvalues. The fixed parameter, and corresponding convergence factor, are shown to maintain their optimality when the iteration matrix also has complex eigenvalues that are contained within an explicitly defined disk in the complex plane. A comparison to Chebyshev acceleration based on the same information of the smallest and largest real eigenvalues (dubbed Restricted Information Chebyshev acceleration) demonstrates that Nesterovs scheme is more robust in the sense that it remains optimal over a larger domain when the iteration matrix does have some complex eigenvalues. Numerical tests validate the efficiency of the proposed scheme. This work generalizes and extends the results of [1, Lemmas 3.1 and 3.2 and Theorem 3.3].
This paper presents a finite difference quasi-Newton method for the minimization of noisy functions. The method takes advantage of the scalability and power of BFGS updating, and employs an adaptive procedure for choosing the differencing interval $h $ based on the noise estimation techniques of Hamming (2012) and More and Wild (2011). This noise estimation procedure and the selection of $h$ are inexpensive but not always accurate, and to prevent failures the algorithm incorporates a recovery mechanism that takes appropriate action in the case when the line search procedure is unable to produce an acceptable point. A novel convergence analysis is presented that considers the effect of a noisy line search procedure. Numerical experiments comparing the method to a function interpolating trust region method are presented.
In this paper, we consider stochastic second-order methods for minimizing a finite summation of nonconvex functions. One important key is to find an ingenious but cheap scheme to incorporate local curvature information. Since the true Hessian matrix is often a combination of a cheap part and an expensive part, we propose a structured stochastic quasi-Newton method by using partial Hessian information as much as possible. By further exploiting either the low-rank structure or the kronecker-product properties of the quasi-Newton approximations, the computation of the quasi-Newton direction is affordable. Global convergence to stationary point and local superlinear convergence rate are established under some mild assumptions. Numerical results on logistic regression, deep autoencoder networks and deep convolutional neural networks show that our proposed method is quite competitive to the state-of-the-art methods.
This work is concerned with the distributed controllability of the one-dimensional wave equation over non-cylindrical domains. The controllability in that case has been obtained in [Castro-Cindea-Munch, Controllability of the linear one-dimensional w ave equation with inner moving forces, SIAM J. Control Optim 2014] for domains satisfying the usual geometric optics condition. In the present work, we first show that the corresponding observability property holds true uniformly in a precise class of non-cylindrical domains. Within this class, we then consider, for a given initial datum, the problem of the optimization of the control support and prove its well-posedness. Numerical experiments are then discussed and highlight the influence of the initial condition on the optimal domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا