ترغب بنشر مسار تعليمي؟ اضغط هنا

A simplified Newton method to generate snapshots for POD models of semilinear optimal control problems

253   0   0.0 ( 0 )
 نشر من قبل Stefan Ulbrich
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In PDE-constrained optimization, proper orthogonal decomposition (POD) provides a surrogate model of a (potentially expensive) PDE discretization, on which optimization iterations are executed. Because POD models usually provide good approximation quality only locally, they have to be updated during optimization. Updating the POD model is usually expensive, however, and therefore often impossible in a model-predictive control (MPC) context. Thus, reduced models of mediocre quality might be accepted. We take the view of a simplified Newton method for solving semilinear evolution equations to derive an algorithm that can serve as an offline phase to produce a POD model. Approaches that build the POD model with impulse response snapshots can be regarded as the first Newton step in this context. In particular, POD models that are based on impulse response snapshots are extended by adding a second simplified Newton step. This procedure improves the approximation quality of the POD model significantly by introducing a moderate amount of extra computational costs during optimization or the MPC loop. We illustrate our findings with an example satisfying our assumptions.



قيم البحث

اقرأ أيضاً

A class of optimal control problems of hybrid nature governed by semilinear parabolic equations is considered. These problems involve the optimization of switching times at which the dynamics, the integral cost, and the bounds on the control may chan ge. First- and second-order optimality conditions are derived. The analysis is based on a reformulation involving a judiciously chosen transformation of the time domains. For autonomous systems and time-independent integral cost, we prove that the Hamiltonian is constant in time when evaluated along the optimal controls and trajectories. A numerical example is provided.
An equilibrium of a linear elastic body subject to loading and satisfying the friction and contact conditions can be described by a variational inequality of the second kind and the respective discrete model attains the form of a generalized equation . To its numerical solution we apply the semismooth* Newton method by Gfrerer and Outrata (2019) in which, in contrast to most available Newton-type methods for inclusions, one approximates not only the single-valued but also the multi-valued part. This is performed on the basis of limiting (Morduchovich) coderivative. In our case of the Tresca friction, the multi-valued part amounts to the subdifferential of a convex function generated by the friction and contact conditions. The full 3D discrete problem is then reduced to the contact boundary. Implementation details of the semismooth* Newton method are provided and numerical tests demonstrate its superlinear convergence and mesh independence.
Least squares Monte Carlo methods are a popular numerical approximation method for solving stochastic control problems. Based on dynamic programming, their key feature is the approximation of the conditional expectation of future rewards by linear le ast squares regression. Hence, the choice of basis functions is crucial for the accuracy of the method. Earlier work by some of us [Belomestny, Schoenmakers, Spokoiny, Zharkynbay. Commun.~Math.~Sci., 18(1):109-121, 2020] proposes to emph{reinforce} the basis functions in the case of optimal stopping problems by already computed value functions for later times, thereby considerably improving the accuracy with limited additional computational cost. We extend the reinforced regression method to a general class of stochastic control problems, while considerably improving the methods efficiency, as demonstrated by substantial numerical examples as well as theoretical analysis.
The aim of this paper is to investigate the use of an entropic projection method for the iterative regularization of linear ill-posed problems. We derive a closed form solution for the iterates and analyze their convergence behaviour both in a case o f reconstructing general nonnegative unknowns as well as for the sake of recovering probability distributions. Moreover, we discuss several variants of the algorithm and relations to other methods in the literature. The effectiveness of the approach is studied numerically in several examples.
In this chapter, we present some recent progresses on the numerics for stochastic distributed parameter control systems, based on the emph{finite transposition method} introduced in our previous works. We first explain how to reduce the numerics of s ome stochastic control problems in this respect to the numerics of backward stochastic evolution equations. Then we present a method to find finite transposition solutions to such equations. At last, we give an illuminating example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا