ﻻ يوجد ملخص باللغة العربية
The human cortex is never at rest but in a state of sparse and noisy neural activity that can be detected at broadly diverse resolution scales. It has been conjectured that such a state is best described as a critical dynamical process -- whose nature is still not fully understood -- where scale-free avalanches of activity emerge at the edge of a phase transition. In particular, some works suggest that this is most likely a synchronization transition, separating synchronous from asynchronous phases. Here, by investigating a simplified model of coupled excitable oscillators describing the cortex dynamics at a mesoscopic level, we investigate the possible nature of such a synchronization phase transition. Within our modeling approach, we conclude that -- in order to reproduce all key empirical observations, such as scale-free avalanches and bistability, on which fundamental functional advantages rely -- the transition to collective oscillatory behavior needs to be of an unconventional hybrid type, with mixed features of type-I and type-II excitability, opening the possibility for a particularly rich dynamical repertoire.
We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention in the interplay between networks topological disorder and its synchronization features. Firstly, we analyze synchronization time $T
We investigate and contrast, via entropic sampling based on the Wang-Landau algorithm, the effects of quenched bond randomness on the critical behavior of two Ising spin models in 2D. The random bond version of the superantiferromagnetic (SAF) square
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type
Biased (degree-dependent) percolation was recently shown to provide new strategies for turning robust networks fragile and vice versa. Here we present more detailed results for biased edge percolation on scale-free networks. We assume a network in wh
We construct and analyze a family of $M$-component vectorial spin systems which exhibit glass transitions and jamming within supercooled paramagnetic states without quenched disorder. Our system is defined on lattices with connectivity $c=alpha M$ an