ﻻ يوجد ملخص باللغة العربية
We present a study of the spiral responses in a stable disc galaxy model to co-orbiting perturbing masses that are evenly spaced around rings. The amplitudes of the responses, or wakes, are proportional to the masses of the perturbations, and we find that the response to a low-mass ring disperses when it is removed -- behaviour that is predicted by linear theory. Higher mass rings cause nonlinear changes through scattering at the major resonances, provoking instabilities that were absent before the scattering took place. The separate wake patterns from two rings orbiting at differing frequencies, produce a net response that is an apparently shearing spiral. When the rings have low mass, the evolution of the simulation is both qualitatively and quantitatively reproduced by linear superposition of the two separate responses. We argue that apparently shearing transient spirals in simulations result from the superposition of two or more steadily rotating patterns, each of which is best accounted for as a normal mode of the non-smooth disc.
We argue that self-excited instabilities are the cause of spiral patterns in simulations of unperturbed stellar discs. In previous papers, we have found that spiral patterns were caused by a few concurrent waves, which we claimed were modes. The supe
In order to address the question of whether spiral disturbances in galaxy discs are gravitationally coupled to the halo, we conduct simulations of idealized models of disc galaxies. We compare growth rates of spiral instabilities in identical mass mo
We study the non-linear evolution of the acoustic Resonant Drag Instability (RDI) using numerical simulations. The acoustic RDI is excited in a dust-gas mixture when dust grains stream through gas, interacting with sound waves to cause a linear insta
Two schemes are proposed to compute the nonlinear electro-optic (EO) tensor for the first time. In the first scheme, we compute the linear EO tensor of the structure under a finite electric field, while we compute the refractive index of the structur
When a charged particle travels across the vacuum chamber of an accelerator, it induces electromagnetic fields, which are left mainly behind the generating particle. These electromagnetic fields act back on the beam and influence its motion. Such an