ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Evolution of Instabilities Between Dust and Sound Waves

59   0   0.0 ( 0 )
 نشر من قبل Eric Moseley
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the non-linear evolution of the acoustic Resonant Drag Instability (RDI) using numerical simulations. The acoustic RDI is excited in a dust-gas mixture when dust grains stream through gas, interacting with sound waves to cause a linear instability. We study this process in a periodic box by accelerating neutral dust with an external driving force. The instability grows as predicted by linear theory, eventually breaking into turbulence and saturating. As in linear theory, the non-linear behavior is characterized by three regimes - high, intermediate, and low wavenumbers - the boundary between which is determined by the dust-gas coupling strength and the dust-to-gas mass ratio. The high and intermediate wavenumber regimes behave similarly to one another, with large dust-to-gas ratio fluctuations while the gas remains largely incompressible. The saturated state is highly anisotropic: dust is concentrated in filaments, jets, or plumes along the direction of acceleration, with turbulent vortex-like structures rapidly forming and dissipating in the perpendicular directions. The low-wavenumber regime exhibits large fluctuations in gas and dust density, but the dust and gas remain more strongly coupled in coherent fronts perpendicular to the acceleration. These behaviors are qualitatively different from those of dust passively driven by external hydrodynamic turbulence, with no back-reaction force from dust onto gas. The virulent nature of these instabilities has interesting implications for dust-driven winds in a variety of astrophysical systems, including around cool-stars, in dusty torii around active-galactic-nuclei, and in and around giant molecular clouds.



قيم البحث

اقرأ أيضاً

126 - Philip F. Hopkins 2019
Recently Squire & Hopkins showed that charged dust grains moving through magnetized gas under the influence of any external force (e.g. radiation pressure, gravity) are subject to a spectrum of instabilities. Qualitatively distinct instability famili es are associated with different Alfvenic or magnetosonic waves and drift or gyro motion. We present a suite of simulations exploring these instabilities, for grains in a homogeneous medium subject to an external acceleration. We vary parameters such as the ratio of Lorentz-to-drag forces on dust, plasma $beta$, size scale, and acceleration. All regimes studied drive turbulent motions and dust-to-gas fluctuations in the saturated state, can rapidly amplify magnetic fields into equipartition with velocity fluctuations, and produce instabilities that persist indefinitely (despite random grain motions). Different parameters produce diverse morphologies and qualitatively different features in dust, but the saturated gas state can be broadly characterized as anisotropic magnetosonic or Alfvenic turbulence. Quasi-linear theory can qualitatively predict the gas turbulent properties. Turbulence grows from small to large scales, and larger-scale modes usually drive more vigorous gas turbulence, but dust velocity and density fluctuations are more complicated. In many regimes, dust forms structures (clumps, filaments, sheets) that reach extreme over-densities (up to $gg 10^{9}$ times mean), and exhibit substantial sub-structure even in nearly-incompressible gas. These can be even more prominent at lower dust-to-gas ratios. In other regimes, dust self-excites scattering via magnetic fluctuations that isotropize and amplify dust velocities, producing fast, diffusive dust motions.
162 - M. Meixner , F. Galliano , S. Hony 2010
The HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) of the Magellanic Clouds will use dust emission to investigate the life cycle of matter in both the Large and Small Magellanic Clouds (LMC and SMC). Using the Herschel Space Observat orys PACS and SPIRE photometry cameras, we imaged a 2x8 square degree strip through the LMC, at a position angle of ~22.5 degrees as part of the science demonstration phase of the Herschel mission. We present the data in all 5 Herschel bands: PACS 100 and 160 {mu}m and SPIRE 250, 350 and 500 {mu}m. We present two dust models that both adequately fit the spectral energy distribution for the entire strip and both reveal that the SPIRE 500 {mu}m emission is in excess of the models by 6 to 17%. The SPIRE emission follows the distribution of the dust mass, which is derived from the model. The PAH-to-dust mass (f_PAH) image of the strip reveals a possible enhancement in the LMC bar in agreement with previous work. We compare the gas mass distribution derived from the HI 21 cm and CO J=1-0 line emission maps to the dust mass map from the models and derive gas-to-dust mass ratios (GDRs). The dust model, which uses the standard graphite and silicate optical properties for Galactic dust, has a very low GDR = 65(+15,-18) making it an unrealistic dust model for the LMC. Our second dust model, which uses amorphous carbon instead of graphite, has a flatter emissivity index in the submillimeter and results in a GDR = 287(+25,-42) that is more consistent with a GDR inferred from extinction.
A key problem in protoplanetary disc evolution is understanding the efficiency of dust radial drift. This process makes the observed dust disc sizes shrink on relatively short timescales, implying that discs started much larger than what we see now. In this paper we use an independent constraint, the gas radius (as probed by CO rotational emission), to test disc evolution models. In particular, we consider the ratio between the dust and gas radius, $R_{rm CO}/R_{rm dust}$. We model the time evolution of protoplanetary discs under the influence of viscous evolution, grain growth, and radial drift. Then, using the radiative transfer code RADMC with approximate chemistry, we compute the dust and gas radii of the models and investigate how $R_{rm CO}/R_{rm dust}$ evolves. Our main finding is that, for a broad range of values of disc mass, initial radius, and viscosity, $R_{rm CO}/R_{rm dust}$ becomes large (>5) after only a short time (<1 Myr) due to radial drift. This is at odds with measurements in young star forming regions such as Lupus, which find much smaller values, implying that dust radial drift is too efficient in these models. Substructures, commonly invoked to stop radial drift in large, bright discs, must then be present, although currently unresolved, in most discs.
The early evolution of a dense young star cluster (YSC) depends on the intricate connection between stellar evolution and dynamical processes. Thus, N-body simulations of YSCs must account for both aspects. We discuss N-body simulations of YSCs with three different metallicities (Z=0.01, 0.1 and 1 Zsun), including metallicity-dependent stellar evolution recipes and metallicity-dependent prescriptions for stellar winds and remnant formation. We show that mass-loss by stellar winds influences the reversal of core collapse. In particular, the post-collapse expansion of the core is faster in metal-rich YSCs than in metal-poor YSCs, because the former lose more mass (through stellar winds) than the latter. As a consequence, the half-mass radius expands more in metal-poor YSCs. We also discuss how these findings depend on the total mass and on the virial radius of the YSC. These results give us a clue to understand the early evolution of YSCs with different metallicity.
98 - A. Lazarian , Thiem Hoang 2020
We reveal a deep connection between alignment of dust grains by RAdiative torques (RATs) and MEchanical Torques (METs) and rotational disruption of grains introduced by Hoang et al. (2019). The disruption of grains happens if they have attractor poin ts corresponding to high angular momentum (high-J). We introduce {it fast disruption} for grains that are directly driven to the high-J attractor on a timescale of spin-up, and {it slow disruption} for grains that are first moved to the low-J attractor and gradually transported to the high-J attractor by gas collisions. The enhancement of grain magnetic susceptibility via iron inclusions expands the parameter space for high-J attractors and increases percentage of grains experiencing the disruption. The increase in the magnitude of RATs or METs can increase the efficiency of fast disruption, but counter-intuitively, decreases the effect of slow disruption by forcing grains towards low-J attractors, whereas the increase in gas density accelerates disruption by faster transporting grains to the high-J attractor. We also show that disruption induced by RATs and METs depends on the angle between the magnetic field and the anisotropic flow. We find that pinwheel torques can increase the efficiency of {it fast disruption} but may decrease the efficiency of {it slow disruption} by delaying the transport of grains from the low-J to high-J attractors via gas collisions. The selective nature of the rotational disruption opens a possibility of observational testing of grain composition as well as physical processes of grain alignment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا