ﻻ يوجد ملخص باللغة العربية
We performed the first light curve analysis of GW Leo and a new ephemeris is obtained for QT Boo. In the present photometric study of two contact binary systems, we found that the period of these binary systems is decreasing at a rate of dp/dt=-6.21*10^(-3) days yr^(-1) for GW Leo, and dp/dt=-4.72*10^(-3) days yr^(-1) for QT Boo, respectively. The light curve investigation also yields that the system GW Leo is a contact W UMa eclipsing binary with a photometric mass ratio of q=0.881+-0.030, a fillout factor of f=3%, and an inclination of 54.060+-0.066 deg. Due to the OConnell effect which is known as asymmetries in the light curves maxima, a cold spot is employed along with the solution. We also calculate the distance of GW Leo from the distance modulus formula as 465.58+-23 pc, which is relatively close to the quantity measured by the Gaia DR2 using the binary systems parallax. Moreover, the positions of their components on the H-R diagram are represented.
The first analysis of the photometric observation in BVR filters of a W UMa type binary system BQ Ari was performed. Light curve analysis was performed using Wilson-Devinney (W-D) code combined with a Monte Carlo (MC) simulation to determine its phot
Orbital period and multi-color light curves investigation of OW Leo are presented for the first time. The orbital period of OW Leo is corrected from $P = 0.325545$ days to $P = 0.32554052$ days in our work, and the observational data from the All-Sky
In this paper, we present the first light curve synthesis and orbital period change analysis of nine contact binaries around the short period limit. It is found that all these systems are W-subtype contact binaries. One of them is a medium contact sy
Photometric observations in V and I bands and low-dispersion spectra of ten ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NS
We present the results of our study of the eclipsing binary systems CSS J112237.1+395219, LINEAR 1286561 and LINEAR 2602707 based on new CCD $B$, $V$, $R_c$ and $I_c$ complete light curves. The ultra-short period nature of the stars citep{Drake2014}