ﻻ يوجد ملخص باللغة العربية
The first analysis of the photometric observation in BVR filters of a W UMa type binary system BQ Ari was performed. Light curve analysis was performed using Wilson-Devinney (W-D) code combined with a Monte Carlo (MC) simulation to determine its photometric and geometric elements and their uncertainties. These results show that BQ Ari is a contact binary system with a photometric mass ratio q=0.548pm0.019, a fillout factor f=24pm0.8 percent, and an orbital inclination of i=85.09pm0.45. We used the parallax from Gaia EDR3 for calculating the absolute parameters of the binary system. This study suggested a new linear ephemeris for BQ Ari, combining our new mid-eclipse times and the previous observations, which we analyzed using the Monte Carlo Markov Chain (MCMC) method. We present the first analysis of the systems orbital period behavior by analyzing the O-C diagram using the Genetic Algorithm (GA) and the MCMC approaches in OCFit code. We attempted to explain the analysis of the residuals of linear fit in the O-C diagram with two approaches; LiTE + Quadratic and Magnetic activity + Quadratic. Although we consider the magnetic activity to be probable, the system should be studied further in order to reveal the nature of orbital period variations.
We performed the first light curve analysis of GW Leo and a new ephemeris is obtained for QT Boo. In the present photometric study of two contact binary systems, we found that the period of these binary systems is decreasing at a rate of dp/dt=-6.21*
Photometric observations in V and I bands and low-dispersion spectra of ten ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NS
We present the results of our study of the eclipsing binary systems CSS J112237.1+395219, LINEAR 1286561 and LINEAR 2602707 based on new CCD $B$, $V$, $R_c$ and $I_c$ complete light curves. The ultra-short period nature of the stars citep{Drake2014}
In this paper, we present the first light curve synthesis and orbital period change analysis of nine contact binaries around the short period limit. It is found that all these systems are W-subtype contact binaries. One of them is a medium contact sy
We present a detailed period analysis of the bright Cepheid-type variable star V1154 Cygni (V =9.1 mag, P~4.9 d) based on almost 600 days of continuous observations by the Kepler space telescope. The data reveal significant cycle-to-cycle fluctuation