ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gaia-ESO Survey: metallicity and kinematic trends in the Milky Way bulge

161   0   0.0 ( 0 )
 نشر من قبل Alvaro Rojas-Arriagada
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We analyzed the stellar parameters and radial velocities of ~1200 stars in five bulge fields as determined from the Gaia-ESO survey data (iDR1). We use VISTA Variables in The Via Lactea (VVV) photometry to obtain reddening values by using a semi-empirical T_eff-color calibration. From a Gaussian decomposition of the metallicity distribution functions, we unveil a clear bimodality in all fields, with the relative size of components depending of the specific position on the sky. In agreement with some previous studies, we find a mild gradient along the minor axis (-0.05 dex/deg between b=-6 and b=-10) that arises from the varying proportion of metal-rich and metal-poor components. The number of metal-rich stars fades in favor of the metal-poor stars with increasing b. The K-magnitude distribution of the metal-rich population splits into two peaks for two of the analyzed fields that intersects the near and far branches of the X-shaped bulge structure. In addition, two lateral fields at (l,b)=(7,-9) and (l,b)=(-10,-8) present contrasting characteristics. In the former, the metallicity distribution is dominated by metal-rich stars, while in the latter it presents a mix of a metal-poor population and and a metal-intermediate one, of nearly equal sizes. Finally, we find systematic differences in the velocity dispersion between the metal-rich and the metal-poor components of each field. Our chemo-kinematical analysis is consistent with a varying field-to-field proportion of stars belonging to (i) a metal-rich boxy/peanut X-shaped component, with bar-like kinematics, and (ii) a metal-poor more extended rotating structure with a higher velocity dispersion that dominates far from the Galactic plane. These first GES data allow studying the detailed spatial dependence of the Galactic bulge populations, thanks to the analysis of individual fields with relatively high statistics.



قيم البحث

اقرأ أيضاً

We attempt to determine the relative fraction of stars that have undergone significant radial migration by studying the orbital properties of metal-rich ([Fe/H]$>0.1$) stars within 2 kpc of the Sun using a sample of more than 3,000 stars selected fro m iDR4 of the Gaia-ESO Survey. We investigate the kinematic properties, such as velocity dispersion and orbital parameters, of stellar populations near the sun as a function of [Mg/Fe] and [Fe/H], which could show evidence of a major merger in the past history of the Milky Way. This was done using the stellar parameters from the Gaia-ESO Survey along with proper motions from PPMXL to determine distances, kinematics, and orbital properties for these stars to analyze the chemodynamic properties of stellar populations near the Sun. Analyzing the kinematics of the most metal-rich stars ([Fe/H]$>0.1$), we find that more than half have small eccentricities ($e<0.2$) or are on nearly circular orbits. Slightly more than 20% of the metal-rich stars have perigalacticons $R_p>7$ kpc. We find that the highest [Mg/Fe], metal-poor populations have lower vertical and radial velocity dispersions compared to lower [Mg/Fe] populations of similar metallicity by $sim10$ km s$^{-1}$. The median eccentricity increases linearly with [Mg/Fe] across all metallicities, while the perigalacticon decreases with increasing [Mg/Fe] for all metallicities. Finally, the most [Mg/Fe]-rich stars are found to have significant asymmetric drift and rotate more than 40 km s$^{-1}$ slower than stars with lower [Mg/Fe] ratios. While our results cannot constrain how far stars have migrated, we propose that migration processes are likely to have played an important role in the evolution of the Milky Way, with metal-rich stars migrating from the inner disk toward to solar neighborhood and past mergers potentially driving enhanced migration of older stellar populations in the disk.
We study the relationship between age, metallicity, and alpha-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpc to 9.5 kpc, and vertical distances from the plane 0 < |Z| < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages > 9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more alpha-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.
The abundance ratio N/O is a useful tool to study the interplay of galactic processes, e.g. star formation efficiency, time-scale of infall and outflow loading factor We aim to trace log(N/O) versus [Fe/H] in the Milky Way and to compare it with a se t of chemical evolution models to understand the role of infall, outflow and star formation efficiency in the building-up of the Galactic disc. We use the abundances from idr2-3, idr4, idr5 data releases of the Gaia-ESO Survey both for Galactic field and open cluster stars.We determine membership and average composition of open clusters and we separate thin and thick disc field stars.We consider the effect of mixing in the abundance of N in giant stars. We compute a grid of chemical evolution models, suited to reproduce the main features of our Galaxy, exploring the effects of the star formation efficiency, the infall time-scale and the differential outflow. With our samples, we map the metallicity range -0.6<[Fe/H]<0.3 with a corresponding -1.2<log(N/O)<-0.2, where the secondary production of N dominates. Thanks to the wide range of Galactocentric distances covered by our samples, we can distinguish the behaviour of log(N/O) in different parts of the Galaxy. Our spatially resolved results allow us to distinguish differences in the evolution of N/O with Galactocentric radius. Comparing the data with our models, we can characterise the radial regions of our Galaxy. A shorter infall time-scale is needed in the inner regions, while the outer regions need a longer infall time-scale, coupled with a higher star formation efficiency. We compare our results with nebular abundances obtained in MaNGA galaxies, finding in our Galaxy a much wider range of log(N/O) than in integrated observations of external galaxies of similar stellar mass, but similar to the ranges found in studies of individual H ii regions.
148 - M. Ness , K. Freeman 2015
The Galactic bulge of the Milky Way is made up of stars with a broad range of metallicity, -3.0 < [Fe/H] < 1 dex. The mean of the Metallicity Distribution Function (MDF) decreases as a function of height z from the plane and, more weakly, with galact ic radius. The most metal rich stars in the inner Galaxy are concentrated to the plane and the more metal poor stars are found predominantly further from the plane, with an overall vertical gradient in the mean of the MDF of about -0.45 dex/kpc. This vertical gradient is believed to reflect the changing contribution with height of different populations in the inner-most region of the Galaxy. The more metal rich stars of the bulge are part of the boxy/peanut structure and comprise stars in orbits which trace out the underlying X-shape. There is still a lack of consensus on the origin of the metal poor stars ([Fe/H] < -0.5) in the region of the bulge. Some studies attribute the more metal poor stars of the bulge to the thick disk and stellar halo that are present in the inner region, and other studies propose that the metal poor stars are a distinct old spheroid bulge population. Understanding the origin of the populations that make up the MDF of the bulge, and identifying if there is a unique bulge population which has formed separately from the disk and halo, has important consequences for identifying the relevant processes in the the formation and evolution of the Milky Way.
We analyse the kinematics of $sim 2000$ giant stars in the direction of the Galactic bulge, extracted from the Gaia-ESO survey in the region $-10^circ lesssim ell lesssim 10^circ$ and $-11^circ lesssim b lesssim -3^circ$. We find distinct kinematic t rends in the metal rich ($mathrm{[M/H]}>0$) and metal poor ($mathrm{[M/H]}<0$) stars in the data. The velocity dispersion of the metal-rich stars drops steeply with latitude, compared to a flat profile in the metal-poor stars, as has been seen previously. We argue that the metal-rich stars in this region are mostly on orbits that support the boxy-peanut shape of the bulge, which naturally explains the drop in their velocity dispersion profile with latitude. The metal rich stars also exhibit peaky features in their line-of-sight velocity histograms, particularly along the minor axis of the bulge. We propose that these features are due to stars on resonant orbits supporting the boxy-peanut bulge. This conjecture is strengthened through the comparison of the minor axis data with the velocity histograms of resonant orbits generated in simulations of buckled bars. The banana or 2:1:2 orbits provide strongly bimodal histograms with narrow velocity peaks that resemble the Gaia-ESO metal-rich data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا