ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple and compact diode laser system stabilized to Doppler-broadened iodine-lines at 633 nm

113   0   0.0 ( 0 )
 نشر من قبل Erik Benkler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a compact iodine-stabilized laser system at 633 nm, based on a distributed-feedback laser diode. Within a footprint of $27times 15$ cm$^2$ the system provides 5 mW of frequency stabilized light from a single-mode fiber. Its performance was evaluated in comparison to Cs clocks representing primary frequency standards, realizing the SI unit Hz via an optical frequency comb. With the best suited absorption line the laser reaches a fractional frequency instability below $10^{-10}$ for averaging times above 10 s. The performance was investigated at several iodine lines and a model was developed to describe the observed stability on the different lines.

قيم البحث

اقرأ أيضاً

We present a simple and effective method to implement an active stabilization of a diode laser with injection locking, which requires minimal user intervenes. The injection locked state of the diode laser is probed by a photodetector, of which sensit ivity is enhanced by a narrow laser-line filter. Taking advantage of the characteristic response of laser power to spectral modes from the narrow laser-line filter, we demonstrate that high spectral purity and low intensity noise of the diode can be simultaneously maintained by an active feedback to the injected laser. Our method is intrinsically cost-effective, and does not require bulky devices, such as Fabry-Perot interferometers or wavemeters, to actively stabilize the diode laser. Based on successful implementation of this method in our quantum gas experiments, it is conceivable that our active stabilization will greatly simplify potential applications of injection locking of diode lasers in modularized or integrated optical systems.
113 - Z. H. Wu , D. L. Sun , S. Z. Wang 2012
We demonstrated a 967 nm diode end-pumped Er:GSGG laser operated at 2.794 Micrometer with spectrum width 3.6 nm in the continuous wave(CW) mode. The maximum output power of 440 mW is obtained at an incident pumping power of 3.4 W, which corresponds t o an optical-to-optical efficiency of 13% and slope efficiency of 13.2%. The results suggest that short cavity and efficient cooling setup for crystal are advantageous to improve laser performance.
Low noise and high repetition rate optical frequency combs are desirable for many applications from timekeeping to precision spectroscopy. For example, gigahertz repetition rate sources greatly increase the acquisition speed of spectra in a dual-comb modality when compared to lower repetition rate sources, while still maintaining sufficient instantaneous resolution to resolve ro-vibrational signatures from molecules in a variety of conditions. In this paper, we present the stabilization and characterization of a turnkey commercial 1~GHz mode-locked laser that operates at telecom wavelengths (1.56 $mu$m). Fiber amplification and spectral broadening result in the high signal-to-noise ratio detection and stabilization of $textit{f}_{textit{ceo}}$ with 438 mrad of residual phase noise (integrated from 10$^2$ to 10$^7$ Hz). Simultaneously, we stabilize the beatnote between the nearest comb mode and a cavity stabilized continuous-wave laser at 1.55 $mu$m with 41 mrad of residual phase noise (integrated from 10$^2$ to 10$^7$ Hz). This robust, self-referenced comb system is built with off-the-shelf polarization-maintaining fiber components and will be useful for a wide range of low noise frequency comb applications that benefit from the increased repetition rate.
In a frequency-modulation spectroscopy experiment, using the radiation from a single frequency diode laser, the spectra of molecular iodine hyperfine structure near 640 nm were recorded on the transition $B^3Pi_{0_u^{+}}-X^1Sigma^+_{g}$. The frequenc y reference given by the value of the modulation frequency (12.5 MHz in given experiment) allows determination of the frequency differences between hyperfine components with accuracy better than 0.1 MHz using the fitting procedure in experiment with only one laser.
642 - Philippe Guay 2019
The phase information provided by the beat note between frequency combs and two continuous-wave lasers is used to extrapolate the phase evolution of comb modes found in a spectral region obtained via nonlinear broadening. This thereafter enables usin g interferogram self-correction to fully retrieve the coherence of a dual-comb beat note between two independent fiber lasers. This approach allows to forego the $f - 2f$ self-referencing of both combs, which is a significant simplification. Broadband near-infrared methane spectroscopy has been conducted as a demonstration of the simplified systems preserved performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا