ﻻ يوجد ملخص باللغة العربية
A magnetic field is generally considered to be incompatible with superconductivity as it tends to spin-polarize electrons and breaks apart the opposite-spin singlet superconducting Cooper pairs. Here, an experimental phenomenon is observed that an intriguing reemergent superconductivity evolves from a conventional superconductivity undergoing a hump-like intermediate phase with a finite electric resistance in the van der Waals heterointerface of layered NbSe2 and CrCl3 flakes. This phenomenon merely occurred when the applied magnetic field is parallel to the sample plane and perpendicular to the electric current direction as compared to the reference sample of a NbSe2 thin flake. The strong anisotropy of the reemergent superconducting phase is pointed to the nature of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state driven by the strong interfacial spin-orbit coupling between NbSe2 and CrCl3 layers. The theoretical picture of FFLO state nodes induced by Josephson vortices collectively pinning is presented for well understanding the experimental observation of the reemergent superconductivity. This finding sheds light on an opportunity to search for the exotic FFLO state in the van der Waals heterostructures with strong interfacial spin-orbit coupling.
Van der Waals heterostructures have risen as a tunable platform to combine different electronic orders, due to the flexibility in stacking different materials with competing symmetry broken states. Among them, van der Waals ferromagnets such as CrI3
CrCl3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make i
We report the first clear observation of interfacial superconductivity on top of FeTe(FT) covered by one quintuple-layer Bi$_2$Te$_3$(BT) forming van-der-Waals heterojunction. Both transport and scanning tunneling spectroscopy measurements confirm th
We grew the single crystals of the SnAs-based van der Waals (vdW)-type superconductor NaSn$_2$As$_2$ and systematically measured its resistivity, specific heat, and ultralow-temperature thermal conductivity. The superconducting transition temperature
Structural and superconducting transitions of layered van der Waals (vdW) hydrogenated germanene (GeH) were observed under high-pressure compression and decompression processes. GeH possesses a superconducting transition at critical temperature (Tc)