ﻻ يوجد ملخص باللغة العربية
Van der Waals heterostructures have risen as a tunable platform to combine different electronic orders, due to the flexibility in stacking different materials with competing symmetry broken states. Among them, van der Waals ferromagnets such as CrI3 and superconductors as NbSe2 provide a natural platform to engineer novel phenomena at ferromagnet-superconductor interfaces. In particular, NbSe2 is well known for hosting strong spin-orbit coupling effects that influence the properties of the superconducting state. Here we put forward a ferromagnet/NbSe2/ferromagnet heterostructure where the interplay between Ising superconductivity in NbSe2 and magnetism controls the magnetic alignment of the heterostructure. In particular, we show that the interplay between spin-orbit coupling and superconductivity allows controlling magnetic states in van der Waals materials. Our results show how hybrid van der Waals ferromagnet/superconductor heterostructure can be used as a tunable materials platform for superconducting spin-orbitronics.
The development of van der Waals (vdW) crystals and their heterostructures has created a fascinating platform for exploring optoelectronic properties in the two-dimensional (2D) limit. With the recent discovery of 2D magnets, the control of the spin
Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an i
Magnetic proximity effects are crucial ingredients for engineering spintronic, superconducting, and topological phenomena in heterostructures. Such effects are highly sensitive to the interfacial electronic properties, such as electron wave function
Structural and superconducting transitions of layered van der Waals (vdW) hydrogenated germanene (GeH) were observed under high-pressure compression and decompression processes. GeH possesses a superconducting transition at critical temperature (Tc)
Two-dimensional (2D) topological superconductors are highly desired because they not only offer opportunities for exploring novel exotic quantum physics, but also possesses potential applications in quantum computation. However, there are few reports