ﻻ يوجد ملخص باللغة العربية
Hierarchical model fitting has become commonplace for case-control studies of cognition and behaviour in mental health. However, these techniques require us to formalise assumptions about the data-generating process at the group level, which may not be known. Specifically, researchers typically must choose whether to assume all subjects are drawn from a common population, or to model them as deriving from separate populations. These assumptions have profound implications for computational psychiatry, as they affect the resulting inference (latent parameter recovery) and may conflate or mask true group-level differences. To test these assumptions we ran systematic simulations on synthetic multi-group behavioural data from a commonly used multi-armed bandit task (reinforcement learning task). We then examined recovery of group differences in latent parameter space under the two commonly used generative modelling assumptions: (1) modelling groups under a common shared group-level prior (assuming all participants are generated from a common distribution, and are likely to share common characteristics); (2) modelling separate groups based on symptomatology or diagnostic labels, resulting in separate group-level priors. We evaluated the robustness of these approaches to variations in data quality and prior specifications on a variety of metrics. We found that fitting groups separately (assumptions 2), provided the most accurate and robust inference across all conditions. Our results suggest that when dealing with data from multiple clinical groups, researchers should analyse patient and control groups separately as it provides the most accurate and robust recovery of the parameters of interest.
With ubiquity of social media platforms, millions of people are sharing their online persona by expressing their thoughts, moods, emotions, feelings, and even their daily struggles with mental health issues voluntarily and publicly on social media. U
Real-time physiological data collection and analysis play a central role in modern well-being applications. Personalized classifiers and detectors have been shown to outperform general classifiers in many contexts. However, building effective persona
The recent growth of digital interventions for mental well-being prompts a call-to-arms to explore the delivery of personalised recommendations from a users perspective. In a randomised placebo study with a two-way factorial design, we analysed the d
Analyzing electronic health records (EHR) poses significant challenges because often few samples are available describing a patients health and, when available, their information content is highly diverse. The problem we consider is how to integrate
Decentralized autonomous organizations as a new form of online governance arecollections of smart contracts deployed on a blockchain platform that intercede groupsof people. A growing number of Decentralized Autonomous Organization Platforms,such as