ﻻ يوجد ملخص باللغة العربية
The ability to hypothesise, develop abstract concepts based on concrete observations and apply these hypotheses to justify future actions has been paramount in human development. An existing line of research in outfitting intelligent machines with abstract reasoning capabilities revolves around the Ravens Progressive Matrices (RPM). There have been many breakthroughs in supervised approaches to solving RPM in recent years. However, this process requires external assistance, and thus it cannot be claimed that machines have achieved reasoning ability comparable to humans. Namely, humans can solve RPM problems without supervision or prior experience once the RPM rule that relations can only exist row/column-wise is properly introduced. In this paper, we introduce a pairwise relations discriminator (PRD), a technique to develop unsupervised models with sufficient reasoning abilities to tackle an RPM problem. PRD reframes the RPM problem into a relation comparison task, which we can solve without requiring the labelling of the RPM problem. We can identify the optimal candidate by adapting the application of PRD to the RPM problem. Our approach, the PRD, establishes a new state-of-the-art unsupervised learning benchmark with an accuracy of 55.9% on the I-RAVEN, presenting a significant improvement and a step forward in equipping machines with abstract reasoning.
Ravens Progressive Matrices (RPMs) are frequently-used in testing humans visual reasoning ability. Recently developed RPM-like datasets and solution models transfer this kind of problems from cognitive science to computer science. In view of the poor
Psychologists recognize Ravens Progressive Matrices as a very effective test of general human intelligence. While many computational models have been developed by the AI community to investigate different forms of top-down, deliberative reasoning on
Generating explanation to explain its behavior is an essential capability for a robotic teammate. Explanations help human partners better understand the situation and maintain trust of their teammates. Prior work on robot generating explanations focu
Semantic Hashing is a popular family of methods for efficient similarity search in large-scale datasets. In Semantic Hashing, documents are encoded as short binary vectors (i.e., hash codes), such that semantic similarity can be efficiently computed
Vehicle re-identification (Re-ID) is an active task due to its importance in large-scale intelligent monitoring in smart cities. Despite the rapid progress in recent years, most existing methods handle vehicle Re-ID task in a supervised manner, which