ﻻ يوجد ملخص باللغة العربية
The discovery of high incidence of hot Jupiters in dense clusters challenges the field-based hot Jupiter formation theory. In dense clusters, interactions between planetary systems and flyby stars are relatively common. This has a significant impact on planetary systems, dominating hot Jupiter formation. In this paper, we perform high precision, few-body simulations of stellar flybys and subsequent planet migration in clusters. A large parameter space exploration demonstrates that close flybys that change the architecture of the planetary system can activate high eccentricity migration mechanisms: Lidov-Kozai and planet-planet scattering, leading to high hot Jupiter formation rate in dense clusters. Our simulations predict that many of the hot Jupiters are accompanied by ultra-cold Saturns, expelled to apastra of thousands of AU. This increase is particularly remarkable for planetary systems originally hosting two giant planets with semi-major axis ratios $sim$ 4 and the flyby star approaching nearly perpendicular to the planetary orbital plane. The estimated lower limit to the hot Jupiter formation rate of a virialized cluster is $sim 1.6times10^{-4}({sigma}/{rm 1kms^{-1}})^5({a_{rm p}}/{rm 20 AU})({M_{rm c}}/{rm 1000M_odot})^{-2}$Gyr$^{-1}$ per star, where $sigma$ is the cluster velocity dispersion, $a_{rm p}$ is the size of the planetary system and $M_{rm c}$ is the mass of the cluster. Our simulations yield a hot Jupiter abundance which is $sim$ 50 times smaller than that observed in the old open cluster M67. We expect that interactions involving binary stars, as well as a third or more giant planets, will close the discrepancy.
(abbreviated) We extend the theory of close encounters of a planet on a parabolic orbit with a star to include the effects of tides induced on the central rotating star. Orbits with arbitrary inclination to the stellar rotation axis are considered. W
Ultra-hot Jupiters are the most highly irradiated gas giant planets, with equilibrium temperatures from 2000 to over 4000 K. Ultra-hot Jupiters are amenable to characterization due to their high temperatures, inflated radii, and short periods, but th
The current paradigm to explain the presence of Jupiters with small orbital periods (P $<$ 10 days; hot Jupiters) that involves their formation beyond the snow line following inward migration, has been challenged by recent works that explored the pos
Context. The birth environments of planetary systems are thought to influence planet formation and orbital evolution, through external photoevaporation and stellar flybys. Recent work has claimed observational support for this, in the form of a corre
[Abridged] A key hypothesis in the field of exoplanet atmospheres is the trend of atmospheric thermal structure with planetary equilibrium temperature. We explore this trend and report here the first statistical detection of a transition in the near-