ترغب بنشر مسار تعليمي؟ اضغط هنا

A transition between the hot and the ultra-hot Jupiter atmospheres

402   0   0.0 ( 0 )
 نشر من قبل Claire Baxter
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] A key hypothesis in the field of exoplanet atmospheres is the trend of atmospheric thermal structure with planetary equilibrium temperature. We explore this trend and report here the first statistical detection of a transition in the near-infrared (NIR) atmospheric emission between hot and ultra-hot Jupiters. We measure this transition using secondary eclipse observations and interpret this phenomenon as changes in atmospheric properties, and more specifically in terms of transition from non-inverted to inverted thermal profiles. We examine a sample of 78 hot Jupiters with secondary eclipse measurements at 3.6 {mu}m and 4.5 {mu}m measured with Spitzer Infrared Array Camera (IRAC). We measure the deviation of the data from the blackbody, which we define as the difference between the observed 4.5 {mu}m eclipse depth and that expected at this wavelength based on the brightness temperature measured at 3.6 {mu}m. We study how the deviation between 3.6 and 4.5 {mu}m changes with theoretical predictions with equilibrium temperature and incoming stellar irradiation. We reveal a clear transition in the observed emission spectra of the hot Jupiter population at 1660 +/- 100 K in the zero albedo, full redistribution equilibrium temperature. We find the hotter exoplanets have even hotter daysides at 4.5 {mu}m compared to 3.6 {mu}m, which manifests as an exponential increase in the emitted power of the planets with stellar insolation. We propose that the measured transition is a result of seeing carbon monoxide in emission due to the formation of temperature



قيم البحث

اقرأ أيضاً

Context: Relatively large radii of some hot Jupiters observed in the ultraviolet (UV) and blue-optical are generally interpreted to be due to Rayleigh scattering by high-altitude haze particles. However, the haze composition and its production mechan isms are not fully understood, and observational information is still limited. Aims: We aim to study the presence of hazes in the atmospheres of HD 209458 b and HD 189733 b with high spectral resolution spectra by analysing the strength of water vapour cross-correlation signals across the red optical and near-infrared wavelength ranges. Methods: A total of seven transits of the two planets were observed with the CARMENES spectrograph at the 3.5 m Calar Alto telescope. Their Doppler-shifted signals were disentangled from the telluric and stellar contributions using the detrending algorithm SYSREM. The residual spectra were subsequently cross-correlated with water vapour templates at 0.70-0.96 $mu$m to measure the strength of the water vapour absorption bands. Results: The optical water vapour bands were detected at $5.2 sigma$ in HD 209458 b in one transit, whereas no evidence of them was found in four transits of HD 189733 b. Therefore, the relative strength of the optical water bands compared to those in the near-infrared were found to be larger in HD 209458 b than in HD 189733 b. Conclusions: We interpret the non-detection of optical water bands in the transmission spectra of HD 189733 b, compared to the detection in HD 209458 b, to be due to the presence of high-altitude hazes in the former planet, which are largely absent in the latter. This is consistent with previous measurements with the Hubble Space Telescope. We show that currently available CARMENES observations of hot Jupiters can be used to investigate the presence of haze extinction in their atmospheres.
Ultra-hot Jupiters are the most highly irradiated gas giant planets, with equilibrium temperatures from 2000 to over 4000 K. Ultra-hot Jupiters are amenable to characterization due to their high temperatures, inflated radii, and short periods, but th eir atmospheres are atypical for planets in that the photosphere possesses large concentrations of atoms and ions relative to molecules. Here we evaluate how the atmospheres of these planets respond to irradiation by stars of different spectral type. We find that ultra-hot Jupiters exhibit temperature
Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, fo rmally in the regime of radiation-hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may prove challenging: it would involve anisotropic and dynamic radiative transfer in a coupled radiation-hydrodynamical flow. On the bright side, it would also imply that the emergent properties of hot Jupiter atmospheres are more direct tracers of their atmospheric flows than is the case for Solar System planets. Radiation-hydrodynamics may also influence radiative transfer in other classes of hot exoplanetary atmospheres with fast winds.
Context. Atmospheric superrotating flows at the equator are an almost ubiquitous result of simulations of hot Jupiters, and a theory explaining how this zonally coherent flow reaches an equilibrium has been developed in the literature. However, this understanding relies on the existence of either an initial superrotating or a sheared flow, coupled with a slow evolution such that a linear steady state can be reached. Aims. A consistent physical understanding of superrotation is needed for arbitrary drag and radiative timescales, and the relevance of considering linear steady states needs to be assessed. Methods. We obtain an analytical expression for the structure, frequency and decay rate of propagating waves in hot Jupiter atmospheres around a state at rest in the 2D shallow water beta plane limit. We solve this expression numerically and confirm the robustness of our results with a 3D linear wave algorithm. We then compare with 3D simulations of hot Jupiter atmospheres and study the non linear momentum fluxes. Results. We show that under strong day night heating the dynamics does not transit through a linear steady state when starting from an initial atmosphere in solid body rotation. We further show that non linear effects favour the initial spin up of superrotation and that the acceleration due to the vertical component of the eddy momentum flux is critical to the initial development of superrotation. Conclusions. Overall, we describe the initial phases of the acceleration of superrotation, including consideration of differing radiative and drag timescales, and conclude that eddy-momentum driven superrotating equatorial jets are robust, physical phenomena in simulations of hot Jupiter atmospheres.
Ultra-hot Jupiters offer interesting prospects for expanding our theories on dynamical evolution and the properties of extremely irradiated atmospheres. In this context, we present the analysis of new optical spectroscopy for the transiting ultra-hot Jupiter WASP-121b. We first refine the orbital properties of WASP-121b, which is on a nearly polar (obliquity $psi^{rm North}$=88.1$pm$0.25$^{circ}$ or $psi^{rm South}$=91.11$pm$0.20$^{circ}$) orbit, and exclude a high differential rotation for its fast-rotating (P$<$1.13 days), highly inclined ($i_mathrm{star}^{rm North}$=8.1$stackrel{+3.0}{_{-2.6}}^{circ}$ or $i_mathrm{star}^{rm South}$=171.9$stackrel{+2.5}{_{-3.4}}^{circ}$) star. We then present a new method that exploits the reloaded Rossiter-McLaughlin technique to separate the contribution of the planetary atmosphere and of the spectrum of the stellar surface along the transit chord. Its application to HARPS transit spectroscopy of WASP-121b reveals the absorption signature from metals, likely atomic iron, in the planet atmospheric limb. The width of the signal (14.3$pm$1.2 km/s) can be explained by the rotation of the tidally locked planet. Its blueshift (-5.2$pm$0.5 km/s) could trace strong winds from the dayside to the nightside, or the anisotropic expansion of the planetary thermosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا