ﻻ يوجد ملخص باللغة العربية
We analyse a splitting integrator for the time discretization of the Schrodinger equation with nonlocal interaction cubic nonlinearity and white noise dispersion. We prove that this time integrator has order of convergence one in the $p$-th mean sense, for any $pgeq1$ in some Sobolev spaces. We prove that the splitting schemes preserves the $L^2$-norm, which is a crucial property for the proof of the strong convergence result. Finally, numerical experiments illustrate the performance of the proposed numerical scheme.
This paper proposes and analyzes an ultra-weak local discontinuous Galerkin scheme for one-dimensional nonlinear biharmonic Schr{o}dinger equations. We develop the paradigm of the local discontinuous Galerkin method by introducing the second-order sp
We analyze the qualitative properties and the order of convergence of a splitting scheme for a class of nonlinear stochastic Schrodinger equations driven by additive It^o noise. The class of nonlinearities of interest includes nonlocal interaction cu
Asymptotic reductions of a defocusing nonlocal nonlinear Schr{o}dinger model in $(3+1)$-dimensions, in both Cartesian and cylindrical geometry, are presented. First, at an intermediate stage, a Boussinesq equation is derived, and then its far-field,
We establish a general theory of optimal strong error estimation for numerical approximations of a second-order parabolic stochastic partial differential equation with monotone drift driven by a multiplicative infinite-dimensional Wiener process. The
In this paper, we introduce two new families of generalised Hermite polynomials/functions (GHPs/GHFs) in arbitrary dimensions, and develop efficient and accurate generalised Hermite spectral algorithms for PDEs with integral fractional Laplacian (IFL