ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Approximation of Monotone Stochastic Partial Different Equations Driven by Multiplicative Noise

142   0   0.0 ( 0 )
 نشر من قبل Zhihui Liu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish a general theory of optimal strong error estimation for numerical approximations of a second-order parabolic stochastic partial differential equation with monotone drift driven by a multiplicative infinite-dimensional Wiener process. The equation is spatially discretized by Galerkin methods and temporally discretized by drift-implicit Euler and Milstein schemes. By the monotone and Lyapunov assumptions, we use both the variational and semigroup approaches to derive a spatial Sobolev regularity under the $L_omega^p L_t^infty dot H^{1+gamma}$-norm and a temporal Holder regularity under the $L_omega^p L_x^2$-norm for the solution of the proposed equation with an $dot H^{1+gamma}$-valued initial datum for $gammain [0,1]$. Then we make full use of the monotonicity of the equation and tools from stochastic calculus to derive the sharp strong convergence rates $O(h^{1+gamma}+tau^{1/2})$ and $O(h^{1+gamma}+tau^{(1+gamma)/2})$ for the Galerkin-based Euler and Milstein schemes, respectively.



قيم البحث

اقرأ أيضاً

For semilinear stochastic evolution equations whose coefficients are more general than the classical global Lipschitz, we present results on the strong convergence rates of numerical discretizations. The proof of them provides a new approach to stron g convergence analysis of numerical discretizations for a large family of second order parabolic stochastic partial differential equations driven by space-time white noises. We apply these results to the stochastic advection-diffusion-reaction equation with a gradient term and multiplicative white noise, and show that the strong convergence rate of a fully discrete scheme constructed by spectral Galerkin approximation and explicit exponential integrator is exactly $frac12$ in space and $frac14$ in time. Compared with the optimal regularity of the mild solution, it indicates that the spetral Galerkin approximation is superconvergent and the convergence rate of the exponential integrator is optimal. Numerical experiments support our theoretical analysis.
We investigate the quality of space approximation of a class of stochastic integral equations of convolution type with Gaussian noise. Such equations arise, for example, when considering mild solutions of stochastic fractional order partial different ial equations but also when considering mild solutions of classical stochastic partial differential equations. The key requirement for the equations is a smoothing property of the deterministic evolution operator which is typical in parabolic type problems. We show that if one has access to nonsmooth data estimates for the deterministic error operator together with its derivative of a space discretization procedure, then one obtains error estimates in pathwise Holder norms with rates that can be read off the deterministic error rates. We illustrate the main result by considering a class of stochastic fractional order partial differential equations and space approximations performed by spectral Galerkin methods and finite elements. We also improve an existing result on the stochastic heat equation.
In this paper, we focus on constructing numerical schemes preserving the averaged energy evolution law for nonlinear stochastic wave equations driven by multiplicative noise. We first apply the compact finite difference method and the interior penalt y discontinuous Galerkin finite element method to discretize space variable and present two semi-discrete schemes, respectively. Then we make use of the discrete gradient method and the Pade approximation to propose efficient fully-discrete schemes. These semi-discrete and fully-discrete schemes are proved to preserve the discrete averaged energy evolution law. In particular, we also prove that the proposed fully-discrete schemes exactly inherit the averaged energy evolution law almost surely if the considered model is driven by additive noise. Numerical experiments are given to confirm theoretical findings.
Numerical approximation of a stochastic partial integro-differential equation driven by a space- time white noise is studied by truncating a series representation of the noise, with finite element method for spatial discretization and convolution qua drature for time discretization. Sharp-order convergence of the numerical solutions is proved up to a logarithmic factor. Numerical examples are provided to support the theoretical analysis.
In this paper we present the theoretical framework needed to justify the use of a kernel-based collocation method (meshfree approximation method) to estimate the solution of high-dimensional stochastic partial differential equations (SPDEs). Using an implicit time stepping scheme, we transform stochastic parabolic equations into stochastic elliptic equations. Our main attention is concentrated on the numerical solution of the elliptic equations at each time step. The estimator of the solution of the elliptic equations is given as a linear combination of reproducing kernels derived from the differential and boundary operators of the SPDE centered at collocation points to be chosen by the user. The random expansion coefficients are computed by solving a random system of linear equations. Numerical experiments demonstrate the feasibility of the method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا