ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting the dust destruction efficiency of supernovae

63   0   0.0 ( 0 )
 نشر من قبل Felix Priestley
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dust destruction by supernovae is one of the main processes removing dust from the interstellar medium (ISM). Estimates of the efficiency of this process, both theoretical and observational, typically assume a shock propagating into a homogeneous medium, whereas the ISM possesses significant substructure in reality. We self-consistently model the dust and gas properties of the shocked ISM in three supernova remnants (SNRs), using X-ray and infrared (IR) data combined with corresponding emission models. Collisional heating by gas with properties derived from X-ray observations produces dust temperatures too high to fit the far-IR fluxes from each SNR. An additional colder dust component is required, which has a minimum mass several orders of magnitude larger than that of the warm dust heated by the X-ray emitting gas. Dust-to-gas mass ratios indicate that the majority of the dust in the X-ray emitting material has been destroyed, while the fraction of surviving dust in the cold component is plausibly close to unity. As the cold component makes up virtually all the total dust mass, destruction timescales based on homogeneous models, which cannot account for multiple phases of shocked gas and dust, may be significantly overestimating actual dust destruction efficiencies, and subsequently underestimating grain lifetimes.

قيم البحث

اقرأ أيضاً

The generation of infrared (IR) radiation and the observed IR intensity distribution at wavelengths of 8, 24, and 100 micron in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included -- large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 micron. A model in which PAHs are destroyed in the ionized region provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs.
78 - D. Paradis , C. Meny , M. Juvela 2019
In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1$^{prime}$ angular resolution (four times greater than a previous analysis) a nd with a larger spectral coverage range thanks to Herschel data. We also ensure the robustness of our results in the framework of various dust models. We performed a decomposition of the dust emission in the infrared (3.6 $mic$ to 500 $mic$) associated with the atomic, molecular, and ionized gas phases in the molecular clouds of the LMC. The resulting spectral energy distributions were fitted with four distinct dust models. We then analyzed the model parameters such as the intensity of the radiation field and the relative dust abundances, as well as the slope of the emission spectra at long wavelengths. This work allows dust models to be compared with infrared data in various environments for the first time, which reveals important differences between the models at short wavelengths in terms of data fitting (mainly in the PAH bands). In addition, this analysis points out distinct results according to the gas phases, such as dust composition directly affecting the dust temperature and the dust emissivity in the submm, and different dust emission in the near-infrared (NIR). We observe direct evidence of dust property evolution from the diffuse to the dense medium in a large sample of molecular clouds in the LMC. In addition, the differences in the dust component abundances between the gas phases could indicate different origins of grain formation. We also point out the presence of a NIR-continuum in all gas phases, with an enhancement in the ionized gas. We favor the hypothesis of an additional dust component as the carrier of this continuum.
Observations have demonstrated that supernovae efficiently produce dust. This is consistent with the hypothesis that supernovae and asymptotic giant branch stars are the primary producers of dust in the Universe. However, there has been a longstandin g question of how much of the dust detected in the interiors of young supernova remnants can escape into the interstellar medium. We present new hydrodynamical calculations of the evolution of dust grains that were formed in dense ejecta clumps within a Cas A-like remnant. We follow the dynamics of the grains as they decouple from the gas after their clump is hit by the reverse shock. They are subsequently subject to destruction by thermal and kinetic sputtering as they traverse the remnant. Grains that are large enough ($sim 0.25,mu$m for silicates and $sim 0.1,mu$m for carbonaceous grains) escape into the interstellar medium while smaller grains get trapped and destroyed. However, grains that reach the interstellar medium still have high velocities, and are subject to further destruction as they are slowed down. We find that for initial grain size distributions that include large ($sim 0.25 - 0.5,mu$m) grains, 10--20% of silicate grains can survive, while 30--50% of carbonaceous grains survive even when the initial size distribution cuts off at smaller ($0.25,mu$m) sizes. For a 19 M$_{odot}$ star similar to the progenitor of Cas A, up to 0.1 M$_{odot}$ of dust can survive if the dust grains formed are large. Thus we show that supernovae under the right conditions can be significant sources of interstellar dust.
We present a new analytic estimate for the energy required to create a constant density core within a dark matter halo. Our new estimate, based on more realistic assumptions, leads to a required energy that is orders of magnitude lower than is claime d in earlier work. We define a core size based on the logarithmic slope of the dark matter density profile so that it is insensitive to the functional form used to fit observed data. The energy required to form a core depends sensitively on the radial scale over which dark matter within the cusp is redistributed within the halo. Simulations indicate that within a region of comparable size to the active star forming regions of the central galaxy that inhabits the halo, dark matter particles have their orbits radially increased by a factor of 2--3 during core formation. Thus the inner properties of the dark matter halo, such as halo concentration, and final core size, set the energy requirements. As a result, the energy cost increases slowly with halo mass as M$_{rm{h}}^{0.3-0.7}$ for core sizes $lesssim1$ kpc. We use the expected star formation history for a given dark matter halo mass to predict dwarf galaxy core sizes. We find that supernovae alone would create well over 4 kpc cores in $10^{10}$ M$_{odot}$ dwarf galaxies emph{if} 100% of the energy were transferred to dark matter particle orbits. We can directly constrain the efficiency factor by studying galaxies with known stellar content and core size, such as Fornax. We find that the efficiency of coupling between stellar feedback and dark matter orbital energy need only be at the 1% level or less to explain Fornaxs 1 kpc core.
176 - Bin Yu , B. Q. Chen , B. W. Jiang 2019
We present three dimensional (3D) dust mapping of 12 supernova remnants (SNRs) in the Galactic anti-center (Galactic longitude $l$ between 150degr and 210degr) based on a recent 3D interstellar extinction map. The dust distribution of the regions whi ch cover the full extents in the radio continuum for the individual SNRs are discussed. Four SNRs show significant spatial coincidences between molecular clouds (MCs) revealed from the 3D extinction mapping and the corresponding radio features. The results confirm the interactions between these SNRs and their surrounding MCs. Based on these correlations, we provide new distance estimates of the four SNRs, G189.1+3.0 (IC443, $d=1729^{+116}_{-94} rm ,pc$), G190.9-2.2 ($d=1036^{+17}_{-81} rm ,pc$), G205.5+0.5 ($d=941^{+96}_{-94}$ or $1257^{+92}_{-101} rm ,pc$) and G213.0-0.6 ($d=1146^{+79}_{-80} rm ,pc$). In addition, we find indirect evidences of potential interactions between SNRs and MCs for three other SNRs. New distance constraints are also given for these three SNRs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا