ﻻ يوجد ملخص باللغة العربية
This paper presents a dialect identification (DID) system based on the transformer neural network architecture. The conventional convolutional neural network (CNN)-based systems use the shorter receptive fields. We believe that long range information is equally important for language and DID, and self-attention mechanism in transformer captures the long range dependencies. In addition, to reduce the computational complexity, self-attention with downsampling is used to process the acoustic features. This process extracts sparse, yet informative features. Our experimental results show that transformer outperforms CNN-based networks on the Arabic dialect identification (ADI) dataset. We also report that the score-level fusion of CNN and transformer-based systems obtains an overall accuracy of 86.29% on the ADI17 database.
In this paper, we explore the use of a factorized hierarchical variational autoencoder (FHVAE) model to learn an unsupervised latent representation for dialect identification (DID). An FHVAE can learn a latent space that separates the more static att
End-to-end deep learning language or dialect identification systems operate on the spectrogram or other acoustic feature and directly generate identification scores for each class. An important issue for end-to-end systems is to have some knowledge o
Extracting robust feature representation is one of the key challenges in object re-identification (ReID). Although convolution neural network (CNN)-based methods have achieved great success, they only process one local neighborhood at a time and suff
Time Delay Neural Networks (TDNN)-based methods are widely used in dialect identification. However, in previous work with TDNN application, subtle variant is being neglected in different feature scales. To address this issue, we propose a new archite
One of the problems with automated audio captioning (AAC) is the indeterminacy in word selection corresponding to the audio event/scene. Since one acoustic event/scene can be described with several words, it results in a combinatorial explosion of po