ﻻ يوجد ملخص باللغة العربية
Gliomas are lethal type of central nervous system tumors with a poor prognosis. Recently, with the advancements in the micro-array technologies thousands of gene expression related data of glioma patients are acquired, leading for salient analysis in many aspects. Thus, genomics are been emerged into the field of prognosis analysis. In this work, we identify survival related 7 gene signature and explore two approaches for survival prediction and risk estimation. For survival prediction, we propose a novel probabilistic programming based approach, which outperforms the existing traditional machine learning algorithms. An average 4 fold accuracy of 74% is obtained with the proposed algorithm. Further, we construct a prognostic risk model for risk estimation of glioma patients. This model reflects the survival of glioma patients, with high risk for low survival patients.
An important task of human genetics studies is to accurately predict disease risks in individuals based on genetic markers, which allows for identifying individuals at high disease risks, and facilitating their disease treatment and prevention. Altho
Genomics, especially multi-omics, has made precision medicine feasible. The completion and publicly accessible multi-omics resource with clinical outcome, such as The Cancer Genome Atlas (TCGA) is a great test bed for developing computational methods
Cardiovascular disease, especially heart failure is one of the major health hazard issues of our time and is a leading cause of death worldwide. Advancement in data mining techniques using machine learning (ML) models is paving promising prediction a
COVID-19 pandemic has created an extreme pressure on the global healthcare services. Fast, reliable and early clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. In order to study
A common problem in bioinformatics is related to identifying gene regulatory regions marked by relatively high frequencies of motifs, or deoxyribonucleic acid sequences that often code for transcription and enhancer proteins. Predicting alignment sco