ترغب بنشر مسار تعليمي؟ اضغط هنا

A Wearable CMOS Biosensor with 3 Designs of Energy-Resolution Scalable Time-Based Resistance to Digital Converter

55   0   0.0 ( 0 )
 نشر من قبل Donghyun Seo
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the design and analysis of a wearable CMOS biosensor with three different designs of energy-resolution scalable time-based resistance to digital converters (RDC), targeted towards either minimizing the energy/conversion step or maximizing bit-resolution. The implemented RDCs consist of a 3-stage differential ring oscillator which is current starved with the resistive sensor, a differential to single ended amplifier, an off-chip counter and serial interface. The first design RDC included the basic structure of time-based RDC and targeted low energy/conversion step. The second design RDC aimed to improve the rms jitter/phase noise of the oscillator with help of speed-up latches, to achieve higher bit-resolution as compared to the first design RDC. The third design RDC reduced the power consumption by scaling the technology with the improved phase-noise design, achieving 1-bit better resolution as that of the second design RDC. Using a time-based implementation, the RDCs exhibit energy-resolution scalablity, and consume 861nW with 18-bit resolution in design 1 in TSMC 0.35um technology. Design 2 and 3 consume 19.1uW with 20-bit resolution using TSMC 0.35um, and 17.6uW with 20-bit resolutions using TSMC 0.18um, respectively (both with 10ms read-time, repeated every second). With 30ms read-time, design 3 achieves 21-bit resolution, which is the highest resolution reported for a time-based ADC. The 0.35um time-based RDC is the lowest-power time-based ADC reported, while the 0.18um time-based RDC with speed-up latch offers the highest resolution. The active chip-area for all 3-designs are less than 1.1 mm^2.



قيم البحث

اقرأ أيضاً

CMOS-based sensor array chips provide new and attractive features as compared to todays standard tools for medical, diagnostic, and biotechnical applications. Examples for molecule- and cell-based approaches and related circuit design issues are discussed.
Time to Digital Converters (TDCs) are very common devices in particles physics experiments. A lot of off-the-shelf TDCs can be employed but the necessity of a custom DAta acQuisition (DAQ) system makes the TDCs implemented on the Field-Programmable G ate Arrays (FPGAs) desirable. Most of the architectures developed so far are based on the tapped delay lines with precision down to 10 ps, obtained with high FPGA resources usage and non-linearity issues to be managed. Often such precision is not necessary; in this case TDC architectures with low resources occupancy are preferable allowing the implementation of data processing systems and of other utilities on the same device. In order to reconstruct gamma-gamma physics events tagged with High Energy Tagger (HET) in the KLOE-2 (K LOng Experiment 2), we need to measure the Time Of Flight (TOF) of the electrons and positrons from the KLOE-2 Interaction Point (IP) to our tagging stations (11 m apart). The required resolution must be better than the bunch spacing (2.7 ns). We have developed and implemented on a Xilinx Virtex-5 FPGA a 32 channel TDC with a precision of 255 ps and low non-linearity effects along with an embedded data acquisition systems and the interface to the online FARM of KLOE-2.
We present the design and test results of a Time-to-Digital-Converter (TDC). The TDC will be a part of the readout ASIC, called ETROC, to read out Low-Gain Avalanche Detectors (LGADs) for the CMS Endcap Timing Layer (ETL) of High-Luminosity LHC upgra de. One of the challenges of the ETROC design is that the TDC is required to consume less than 200 W for each pixel at the nominal hit occupancy of 1%. To meet the low-power requirement, we use a single delay line for both the Time of Arrival (TOA) and the Time over Threshold (TOT) measurements without delay control. A double-strobe self-calibration scheme is used to compensate for process variation, temperature, and power supply voltage. The TDC is fabricated in a 65 nm CMOS technology. The overall performances of the TDC have been evaluated. The TOA has a bin size of 17.8 ps within its effective dynamic range of 11.6 ns. The effective measurement precision of the TOA is 5.6 ps and 9.9 ps with and without the nonlinearity correction, respectively. The TDC block consumes 97 W at the hit occupancy of 1%. Over a temperature range from 23 C to 78 C and a power supply voltage range from 1.05 V to 1.35 V (the nominal value of 1.20 V), the self-calibrated bin size of the TOA varies within 0.4%. The measured TDC performances meet the requirements except that more tests will be performed in the future to verify that the TDC complies with the radiation-tolerance specifications.
A 33.6 ps LSB Time-to-Digital converter was designed in 130 nm BiCMOS technology. The core of the converter is a differential 9-stage ring oscillator, based on a multi-path architecture. A novel version of this design is proposed, along with an analy tical model of linearity. The model allowed us to understand the source of the performance superiority (in terms of linearity) of our design and to predict further improvements. The oscillator is integrated in a event-by-event self-calibration system that allows avoiding any PLL-based synchronization. For this reason and for the compactness and simplicity of the architecture, the proposed TDC is suitable for applications in which a large number of converters and a massive parallelization are required such as High-Energy Physics and medical imaging detector systems. A test chip for the TDC has been fabricated and tested. The TDC shows a DNL$leq$1.3 LSB, an INL$leq$2 LSB and a single-shot precision of 19.5 ps (0.58 LSB). The chip dissipates a power of 5.4 mW overall.
Power distribution systems are experiencing a large-scale integration of Converter-Interfaced Distributed Energy Resources (CIDERs). This complicates the analysis and mitigation of harmonics, whose creation and propagation are facilitated by the inte ractions of converters and their controllers through the grid. In this paper, a method for the calculation of the so-called Harmonic Power-Flow (HPF) in three-phase grids with CIDERs is proposed. The distinguishing feature of this HPF method is the generic and modular representation of the system components. Notably, as opposed to most of the existing approaches, the coupling between harmonics is explicitly considered. The HPF problem is formulated by combining the hybrid nodal equations of the grid with the closed-loop transfer functions of the CIDERs, and solved using the Newton-Raphson method. The grid components are characterized by compound electrical parameters, which allow to represent both transposed or non-transposed lines. The CIDERs are represented by modular linear time-periodic systems, which allows to treat both grid-forming and grid-following control laws. The methods accuracy and computational efficiency are confirmed via time-domain simulations of the CIGRE low-voltage benchmark microgrid. This paper is divided in two parts, which focus on the development (Part I) and the validation (Part II) of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا