ﻻ يوجد ملخص باللغة العربية
Let $(M,I, Omega)$ be a holomorphically symplectic manifold equipped with a holomorphic Lagrangian fibration $pi:; M mapsto X$, and $eta$ a closed form of Hodge type (1,1)+(2,0) on $X$. We prove that $Omega:=Omega+pi^* eta$ is again a holomorphically symplectic form, for another complex structure $I$, which is uniquely determined by $Omega$. The corresponding deformation of complex structures is called degenerate twistorial deformation. The map $pi$ is holomorphic with respect to this new complex structure, and $X$ and the fibers of $pi$ retain the same complex structure as before. Let $s$ be a smooth section of of $pi$. We prove that there exists a degenerate twistorial deformation $(M,I, Omega)$ such that $s$ is a holomorphic section.
In 1995, Dan Guan constructed examples of non-Kahler, simply-connected holomorphically symplectic manifolds. An alternative construction, using the Hilbert scheme of Kodaira-Thurston surface, was given by F. Bogomolov. We investigate topology and def
We prove several results concerning the intersection cohomology and the perverse filtration associated with a Lagrangian fibration of an irreducible symplectic variety. We first show that the perverse numbers only depend on the deformation equivalenc
Let $M$ be a hyperkahler manifold of maximal holonomy (that is, an IHS manifold), and let $K$ be its Kahler cone, which is an open, convex subset in the space $H^{1,1}(M, R)$ of real (1,1)-forms. This space is equipped with a canonical bilinear symme
For a Lagrangian torus A in a simply-connected projective symplectic manifold M, we prove that M has a hypersurface disjoint from a deformation of A. This implies that a Lagrangian torus in a compact hyperkahler manifold is a fiber of an almost holom
For complete intersection Calabi-Yau manifolds in toric varieties, Gross and Haase-Zharkov have given a conjectural combinatorial description of the special Lagrangian torus fibrations whose existence was predicted by Strominger, Yau and Zaslow. We p