ﻻ يوجد ملخص باللغة العربية
In 1995, Dan Guan constructed examples of non-Kahler, simply-connected holomorphically symplectic manifolds. An alternative construction, using the Hilbert scheme of Kodaira-Thurston surface, was given by F. Bogomolov. We investigate topology and deformation theory of Bogomolov-Guan manifolds and show that it is similar to that of hyperkahler manifolds. We prove the local Torelli theorem, showing that holomorphically symplectic deformations of BG-manifolds are unobstructed, and the corresponding period map is locally a diffeomorphism. Using the local Torelli theorem, we prove the Fujiki formula for a BG-manifold $M$, showing that there exists a symmetric form q on the second cohomology such that for any $win H^2(M)$ one has $int_M w^{2n}=q(w,w)^n$. This form is a non-Kahler version of the Beauville-Bogomolov-Fujiki form known in hyperkahler geometry.
Let $(M,I, Omega)$ be a holomorphically symplectic manifold equipped with a holomorphic Lagrangian fibration $pi:; M mapsto X$, and $eta$ a closed form of Hodge type (1,1)+(2,0) on $X$. We prove that $Omega:=Omega+pi^* eta$ is again a holomorphically
We analyze two different fibrations of a link complement M constructed by McMullen-Taubes, and studied further by Vidussi. These examples lead to inequivalent symplectic forms on a 4-manifold X = S x M, which can be distinguished by the dimension of
A C-symplectic structure is a complex-valued 2-form which is holomorphically symplectic for an appropriate complex structure. We prove an analogue of Mosers isotopy theorem for families of C-symplectic structures and list several applications of this
In the context of irreducible holomorphic symplectic manifolds, we say that (anti)holomorphic (anti)symplectic involutions are brane involutions since their fixed point locus is a brane in the physicists language, i.e. a submanifold which is either c
We give an explicit local formula for any formal deformation quantization, with separation of variables, on a Kahler manifold. The formula is given in terms of differential operators, parametrized by acyclic combinatorial graphs.