ﻻ يوجد ملخص باللغة العربية
The structure inversion asymmetry at surfaces and interfaces give rise to the Rashba spin-orbit interaction (SOI), that breaks the spin degeneracy of surface or interface states. Hence, when an electric current runs through a surface or interface, this Rashba effect generates an effective magnetic field acting on the electron spin. This provides an additional tool to manipulate the spin state in materials such as Si and Ge that, in their bulk form, possess inversion symmetry (or lack structural inersion asymmetry). The existence of Rashba states could be demonstrated by photoemission spectroscopy at the interface between different metals and Ge(111) and by spin-charge conversion experiments at the Fe/Ge(111) interface even though made of two light elements. In this work, we identify the fingerprint of the Rashba states at the Fe/Ge(111) interface by magnetotransport measurements in the form of a large unidirectional magnetoresistance of up to 0.1 %. From its temperature dependence, we find that the Rashba energy splitting is larger than in pure Ge(111) subsurface states.
Relating magnetotransport properties to specific spin textures at surfaces or interfaces is an intense field of research nowadays. Here, we investigate the variation of the electrical resistance of Ge(111) grown epitaxially on semi-insulating Si(111)
We report direct experimental evidence showing induced magnetic moments on Ge at the interface in an Fe/Ge system. Details of the x-ray magnetic circular dichroism and resonant magnetic scattering at the Ge L edge demonstrate the presence of spin-pol
We report current-direction dependent or unidirectional magnetoresistance (UMR) in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$, that is several orders of magnit
Thanks to its unique symmetry, the unidirectional spin Hall and Rashba-Edelstein magnetoresistance (USRMR) is of great fundamental and practical interest, particularly in the context of reading magnetization states in two-terminal spin-orbit torque s
Recent experimental realizations of the topological semimetal states in several monolayer systems are very attractive because of their exotic quantum phenomena and technological applications. Based on first-principles density-functional theory calcul