ترغب بنشر مسار تعليمي؟ اضغط هنا

On the local in time well-posedness of an elliptic-parabolic ferroelectric phase-field model

48   0   0.0 ( 0 )
 نشر من قبل Yongming Luo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Yongming Luo




اسأل ChatGPT حول البحث

We consider a state-of-the-art ferroelectric phase-field model arising from the engineering area in recent years, which is mathematically formulated as a coupled elliptic-parabolic differential system. We utilize a fixed point theorem based on the maximal parabolic regularity theory to show the local in time well-posedness of the ferroelectric problem. The well-posedness result will firstly be proved under certain general assumptions. We then give precise geometric and regularity conditions which will guarantee the fulfillment of the assumptions.



قيم البحث

اقرأ أيضاً

213 - Yuzhao Wang 2009
In this paper we consider the hyperbolic-elliptic Ishimori initial-value problem. We prove that such system is locally well-posed for small data in $H^{s}$ level space, for $s> 3/2$. The new ingredient is that we develop the methods of Ionescu and Ke nig cite{IK} and cite{IK2} to approach the problem in a perturbative way.
In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane, with no-slip condition for velocity field, perfect conducting condition for magnetic field and Dirichlet boundary condition for temperature on the boundary. When the viscosity, heat conductivity and magnetic diffusivity coefficients tend to zero in the same rate, there is a boundary layer that is described by a Prandtl-type system. By applying a coordinate transformation in terms of stream function as motivated by the recent work cite{liu2016mhdboundarylayer} on the incompressible MHD system, under the non-degeneracy condition on the tangential magnetic field, we obtain the local-in-time well-posedness of the boundary layer system in weighted Sobolev spaces.
We consider a dilute suspension of dumbbells joined by a finitely extendible nonlinear elastic (FENE) connector evolving under the classical Warner potential $U(s)=-frac{b}{2} log(1-frac{2s}{b})$, $sin[0,frac{b}{2})$. The solvent under consideration is modelled by the compressible Navier--Stokes system defined on the torus $mathbb{T}^d$ with $d=2,3$ coupled with the Fokker--Planck equation (Kolmogorov forward equation) for the probability density function of the dumbbell configuration. We prove the existence of a unique local-in-time solution to the coupled system where this solution is smooth in the spacetime variables and interpreted weakly in the elongation variable. Our result holds true independently of whether or not the centre-of-mass diffusion term is incorporated in the Fokker--Planck equation.
We consider a model for the evolution of damage in elastic materials originally proposed by Michel Fremond. For the corresponding PDE system we prove existence and uniqueness of a local in time strong solution. The main novelty of our result stands i n the fact that, differently from previous contributions, we assume no occurrence of any type of regularizing terms.
368 - Buyang Li , Chaoxia Yang 2014
We study the time-dependent Ginzburg--Landau equations in a three-dimensional curved polyhedron (possibly nonconvex). Compared with the previous works, we prove existence and uniqueness of a global weak solution based on weaker regularity of the solu tion in the presence of edges or corners, where the magnetic potential may not be in $L^2(0,T;H^1(Omega)^3)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا