ﻻ يوجد ملخص باللغة العربية
We consider a dilute suspension of dumbbells joined by a finitely extendible nonlinear elastic (FENE) connector evolving under the classical Warner potential $U(s)=-frac{b}{2} log(1-frac{2s}{b})$, $sin[0,frac{b}{2})$. The solvent under consideration is modelled by the compressible Navier--Stokes system defined on the torus $mathbb{T}^d$ with $d=2,3$ coupled with the Fokker--Planck equation (Kolmogorov forward equation) for the probability density function of the dumbbell configuration. We prove the existence of a unique local-in-time solution to the coupled system where this solution is smooth in the spacetime variables and interpreted weakly in the elongation variable. Our result holds true independently of whether or not the centre-of-mass diffusion term is incorporated in the Fokker--Planck equation.
We prove the local well-posedness in Sobolev spaces of the free-boundary problem for compressible inviscid resistive isentropic MHD system under the Rayleigh-Taylor physical sign condition, which describes the motion of a free-boundary compressible p
We prove global well-posedness for the microscopic FENE model under a sharp boundary requirement. The well-posedness of the FENE model that consists of the incompressible Navier-Stokes equation and the Fokker-Planck equation has been studied intensiv
In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane, with no-slip condition for velocity field, perfect conducting condition
The FENE dumbbell model consists of the incompressible Navier-Stokes equation and the Fokker-Planck equation for the polymer distribution. In such a model, the polymer elongation cannot exceed a limit $sqrt{b}$, yielding all interesting features near
We consider 3D free-boundary compressible elastodynamic system under the Rayleigh-Taylor sign condition. It describes the motion of an isentropic inviscid elastic medium with moving boundary. The deformation tensor satisfies the neo-Hookean linear el