ﻻ يوجد ملخص باللغة العربية
Random Matrix Theory (RMT) provides a tool to understand physical systems in which spectral properties can be changed from Poissonian (integrable) to Wigner-Dyson (chaotic). Such transitions can be seen in Rosenzweig-Porter ensemble (RPE) by tuning the fluctuations in the random matrix elements. We show that integrable or chaotic regimes in any 2-level system can be uniquely controlled by the symmetry-breaking properties. We compute the Nearest Neighbour Spacing (NNS) distributions of these matrix ensembles and find that they exactly match with that of RPE. Our study indicates that the loss of integrability can be exactly mapped to the extent of disorder in 2-level systems.
We study analytically and numerically the dynamics of the generalized Rosenzweig-Porter model, which is known to possess three distinct phases: ergodic, multifractal and localized phases. Our focus is on the survival probability $R(t)$, the probabili
The combined effect of disorder and symmetry-breaking fields on the two-dimensional XY model is examined. The study includes disorder in the interaction among spins in the form of random phase shifts as well as disorder in the local orientation of th
We study the set of solutions of random k-satisfiability formulae through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substanti
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical
In the strictly periodic setting, the electric polarization of inversion-symmetric solids with and without time-reversal symmetry and the isotropic magneto-electric response function of time-reversal symmetric insulators are known to be topological i