ﻻ يوجد ملخص باللغة العربية
We study analytically and numerically the dynamics of the generalized Rosenzweig-Porter model, which is known to possess three distinct phases: ergodic, multifractal and localized phases. Our focus is on the survival probability $R(t)$, the probability of finding the initial state after time $t$. In particular, if the system is initially prepared in a highly-excited non-stationary state (wave packet) confined in space and containing a fixed fraction of all eigenstates, we show that $R(t)$ can be used as a dynamical indicator to distinguish these three phases. Three main aspects are identified in different phases. The ergodic phase is characterized by the standard power-law decay of $R(t)$ with periodic oscillations in time, surviving in the thermodynamic limit, with frequency equals to the energy bandwidth of the wave packet. In multifractal extended phase the survival probability shows an exponential decay but the decay rate vanishes in the thermodynamic limit in a non-trivial manner determined by the fractal dimension of wave functions. Localized phase is characterized by the saturation value of $R(ttoinfty)=k$, finite in the thermodynamic limit $Nrightarrowinfty$, which approaches $k=R(tto 0)$ in this limit.
Random Matrix Theory (RMT) provides a tool to understand physical systems in which spectral properties can be changed from Poissonian (integrable) to Wigner-Dyson (chaotic). Such transitions can be seen in Rosenzweig-Porter ensemble (RPE) by tuning t
We study an asymptotic behavior of the return probability for the critical random matrix ensemble in the regime of strong multifractality. The return probability is expected to show critical scaling in the limit of large time or large system size. Us
We introduce a log-gas model that is a generalization of a random matrix ensemble with an additional interaction, whose strength depends on a parameter $gamma$. The equilibrium density is computed by numerically solving the Riemann-Hilbert problem as
We consider the Rosenzweig-Porter model $H = V + sqrt{T}, Phi$, where $V$ is a $N times N$ diagonal matrix, $Phi$ is drawn from the $N times N$ Gaussian Orthogonal Ensemble, and $N^{-1} ll T ll 1$. We prove that the eigenfunctions of $H$ are typicall
We numerically study the level statistics of the Gaussian $beta$ ensemble. These statistics generalize Wigner-Dyson level statistics from the discrete set of Dyson indices $beta = 1,2,4$ to the continuous range $0 < beta < infty$. The Gaussian $beta$