ﻻ يوجد ملخص باللغة العربية
We prove an analogue of Kroneckers second limit formula for a continuous family of indefinite zeta functions. Indefinite zeta functions were introduced in the authors previous paper as Mellin transforms of indefinite theta functions, as defined by Zwegers. Our formula is valid in dimension g=2 at s=1 or s=0. For a choice of parameters obeying a certain symmetry, an indefinite zeta function is a differenced ray class zeta function of a real quadratic field, and its special value at $s=0$ was conjectured by Stark to be a logarithm of an algebraic unit. Our formula also permits practical high-precision computation of Stark ray class invariants.
We define generalised zeta functions associated to indefinite quadratic forms of signature (g-1,1) -- and more generally, to complex symmetric matrices whose imaginary part has signature (g-1,1) -- and we investigate their properties. These indefinit
Of what use are the zeros of the Riemann zeta function? We can use sums involving zeta zeros to count the primes up to $x$. Perrons formula leads to sums over zeta zeros that can count the squarefree integers up to $x$, or tally Eulers $phi$ function
We examine partition zeta functions analogous to the Riemann zeta function but summed over subsets of integer partitions. We prove an explicit formula for a family of partition zeta functions already shown to have nice properties -- those summed over
The Riemann zeta function $zeta(s)$ is defined as the infinite sum $sum_{n=1}^infty n^{-s}$, which converges when ${rm Re},s>1$. The Riemann hypothesis asserts that the nontrivial zeros of $zeta(s)$ lie on the line ${rm Re},s= frac{1}{2}$. Thus, to f
We compute the complete set of candidates for the zeta function of a K3 surface over F_2 consistent with the Weil conjectures, as well as the complete set of zeta functions of smooth quartic surfaces over F_2. These sets differ substantially, but we