ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Local Porous Media Equations with Fractional Time Derivative

205   0   0.0 ( 0 )
 نشر من قبل Nicola Zamponi
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate existence of solutions for the system: begin{equation*} left{ begin{array}{l} D^{alpha}_tu=textrm{div}(u abla p), D^{alpha}_tp=-(-Delta)^{s}p+u^{2}, end{array} right. end{equation*} in $mathbb{T}^3$ for $0< s leq 1$, and $0< alpha le 1$. The term $D^alpha_t u$ denotes the Caputo derivative, which models memory effects in time. The fractional Laplacian $(-Delta)^{s}$ represents the L{e}vy diffusion. We prove global existence of nonnegative weak solutions that satisfy a variational inequality. The proof uses several approximations steps, including an implicit Euler time discretization. We show that the proposed discrete Caputo derivative satisfies several important properties, including positivity preserving, convexity and rigorous convergence towards the continuous Caputo derivative. Most importantly, we give a strong compactness criteria for piecewise constant functions, in the spirit of Aubin-Lions theorem, based on bounds of the discrete Caputo derivative.



قيم البحث

اقرأ أيضاً

This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized fra ctional time-derivative defined by Hilfer (2000), the space derivative of second order by the Riesz-Feller fractional derivative and adding the function phi(x,t) which is a nonlinear function overning reaction. The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of the H-function. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al. (2001, 2005) and a result very recently given by Tomovski et al. (2011). Computational representation of the fundamental solution is also obtained explicitly. Fractional order moments of the distribution are deduced. At the end, mild extensions of the derived results associated with a finite number of Riesz-Feller space fractional derivatives are also discussed.
200 - Hongjie Dong , Yanze Liu 2021
We obtain $L_p$ estimates for fractional parabolic equations with space-time non-local operators $$ partial_t^alpha u - Lu= f quad mathrm{in} quad (0,T) times mathbb{R}^d,$$ where $partial_t^alpha u$ is the Caputo fractional derivative of order $alph a in (0,1]$, $Tin (0,infty)$, and $$Lu(t,x) := int_{ mathbb{R}^d} bigg( u(t,x+y)-u(t,x) - ycdot abla_xu(t,x)chi^{(sigma)}(y)bigg)K(t,x,y),dy $$ is an integro-differential operator in the spatial variables. Here we do not impose any regularity assumption on the kernel $K$ with respect to $t$ and $y$. We also derive a weighted mixed-norm estimate for the equations with operators that are local in time, i.e., $alpha = 1$, which extend the previous results by using a quite different method.
109 - Mark Allen 2017
We prove uniqueness for weak solutions to abstract parabolic equations with the fractional Marchaud or Caputo time derivative. We consider weak solutions in time for divergence form equations when the fractional derivative is transferred to the test function.
We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain $Omega$ of $R^N$ and complemented with homogeneous Dirichlet boundary conditions of solid type (i.e., imposed in the entire complement of $Omega$). After sett ing a proper functional framework, we prove existence and uniqueness of weak solutions to the related initial-boundary value problem. Then, we investigate some significant singular limits obtained as the order of either of the fractional Laplacians appearing in the equation is let tend to 0. In particular, we can rigorously prove that the fractional Allen-Cahn, fractional porous medium, and fractional fast-diffusion equations can be obtained in the limit. Finally, in the last part of the paper, we discuss existence and qualitative properties of stationary solutions of our problem and of its singular limits.
In this paper we investigate the solution of generalized distributed order diffusion equations with composite time fractional derivative by using the Fourier-Laplace transform method. We represent solutions in terms of infinite series in Fox $H$-func tions. The fractional and second moments are derived by using Mittag-Leffler functions. We observe decelerating anomalous subdiffusion in case of two composite time fractional derivatives. Generalized uniformly distributed order diffusion equation, as a model for strong anomalous behavior, is analyzed by using Tauberian theorem. Some previously obtained results are special cases of those presented in this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا