ترغب بنشر مسار تعليمي؟ اضغط هنا

SLM: Learning a Discourse Language Representation with Sentence Unshuffling

73   0   0.0 ( 0 )
 نشر من قبل Haejun Lee
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation in a fully self-supervised manner. Recent pre-training methods in NLP focus on learning either bottom or top-level language representations: contextualized word representations derived from language model objectives at one extreme and a whole sequence representation learned by order classification of two given textual segments at the other. However, these models are not directly encouraged to capture representations of intermediate-size structures that exist in natural languages such as sentences and the relationships among them. To that end, we propose a new approach to encourage learning of a contextualized sentence-level representation by shuffling the sequence of input sentences and training a hierarchical transformer model to reconstruct the original ordering. Through experiments on downstream tasks such as GLUE, SQuAD, and DiscoEval, we show that this feature of our model improves the performance of the original BERT by large margins.



قيم البحث

اقرأ أيضاً

This paper presents a novel training method, Conditional Masked Language Modeling (CMLM), to effectively learn sentence representations on large scale unlabeled corpora. CMLM integrates sentence representation learning into MLM training by conditioni ng on the encoded vectors of adjacent sentences. Our English CMLM model achieves state-of-the-art performance on SentEval, even outperforming models learned using supervised signals. As a fully unsupervised learning method, CMLM can be conveniently extended to a broad range of languages and domains. We find that a multilingual CMLM model co-trained with bitext retrieval (BR) and natural language inference (NLI) tasks outperforms the previous state-of-the-art multilingual models by a large margin, e.g. 10% improvement upon baseline models on cross-lingual semantic search. We explore the same language bias of the learned representations, and propose a simple, post-training and model agnostic approach to remove the language identifying information from the representation while still retaining sentence semantics.
124 - Xin Liu , Jiefu Ou , Yangqiu Song 2020
Implicit discourse relation classification is one of the most difficult parts in shallow discourse parsing as the relation prediction without explicit connectives requires the language understanding at both the text span level and the sentence level. Previous studies mainly focus on the interactions between two arguments. We argue that a powerful contextualized representation module, a bilateral multi-perspective matching module, and a global information fusion module are all important to implicit discourse analysis. We propose a novel model to combine these modules together. Extensive experiments show that our proposed model outperforms BERT and other state-of-the-art systems on the PDTB dataset by around 8% and CoNLL 2016 datasets around 16%. We also analyze the effectiveness of different modules in the implicit discourse relation classification task and demonstrate how different levels of representation learning can affect the results.
83 - Yu Shi 2021
The Transformer model is widely used in natural language processing for sentence representation. However, the previous Transformer-based models focus on function words that have limited meaning in most cases and could merely extract high-level semant ic abstraction features. In this paper, two approaches are introduced to improve the performance of Transformers. We calculated the attention score by multiplying the part-of-speech weight vector with the correlation coefficient, which helps extract the words with more practical meaning. The weight vector is obtained by the input text sequence based on the importance of the part-of-speech. Furthermore, we fuse the features of each layer to make the sentence representation results more comprehensive and accurate. In experiments, we demonstrate the effectiveness of our model Transformer-F on three standard text classification datasets. Experimental results show that our proposed model significantly boosts the performance of text classification as compared to the baseline model. Specifically, we obtain a 5.28% relative improvement over the vanilla Transformer on the simple tasks.
We show state-of-the-art word representation learning methods maximize an objective function that is a lower bound on the mutual information between different parts of a word sequence (i.e., a sentence). Our formulation provides an alternative perspe ctive that unifies classical word embedding models (e.g., Skip-gram) and modern contextual embeddings (e.g., BERT, XLNet). In addition to enhancing our theoretical understanding of these methods, our derivation leads to a principled framework that can be used to construct new self-supervised tasks. We provide an example by drawing inspirations from related methods based on mutual information maximization that have been successful in computer vision, and introduce a simple self-supervised objective that maximizes the mutual information between a global sentence representation and n-grams in the sentence. Our analysis offers a holistic view of representation learning methods to transfer knowledge and translate progress across multiple domains (e.g., natural language processing, computer vision, audio processing).
Pre-trained language models have proven their unique powers in capturing implicit language features. However, most pre-training approaches focus on the word-level training objective, while sentence-level objectives are rarely studied. In this paper, we propose Contrastive LEArning for sentence Representation (CLEAR), which employs multiple sentence-level augmentation strategies in order to learn a noise-invariant sentence representation. These augmentations include word and span deletion, reordering, and substitution. Furthermore, we investigate the key reasons that make contrastive learning effective through numerous experiments. We observe that different sentence augmentations during pre-training lead to different performance improvements on various downstream tasks. Our approach is shown to outperform multiple existing methods on both SentEval and GLUE benchmarks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا