ترغب بنشر مسار تعليمي؟ اضغط هنا

A Spatio-temporal Track Association Algorithm Based on Marine Vessel Automatic Identification System Data

69   0   0.0 ( 0 )
 نشر من قبل Imtiaz Ahmed
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Tracking multiple moving objects in real-time in a dynamic threat environment is an important element in national security and surveillance system. It helps pinpoint and distinguish potential candidates posing threats from other normal objects and monitor the anomalous trajectories until intervention. To locate the anomalous pattern of movements, one needs to have an accurate data association algorithm that can associate the sequential observations of locations and motion with the underlying moving objects, and therefore, build the trajectories of the objects as the objects are moving. In this work, we develop a spatio-temporal approach for tracking maritime vessels as the vessels location and motion observations are collected by an Automatic Identification System. The proposed approach is developed as an effort to address a data association challenge in which the number of vessels as well as the vessel identification are purposely withheld and time gaps are created in the datasets to mimic the real-life operational complexities under a threat environment. Three training datasets and five test sets are provided in the challenge and a set of quantitative performance metrics is devised by the data challenge organizer for evaluating and comparing resulting methods developed by participants. When our proposed track association algorithm is applied to the five test sets, the algorithm scores a very competitive performance.



قيم البحث

اقرأ أيضاً

Person re-identification (re-ID) in the scenario with large spatial and temporal spans has not been fully explored. This is partially because that, existing benchmark datasets were mainly collected with limited spatial and temporal ranges, e.g., usin g videos recorded in a few days by cameras in a specific region of the campus. Such limited spatial and temporal ranges make it hard to simulate the difficulties of person re-ID in real scenarios. In this work, we contribute a novel Large-scale Spatio-Temporal LaST person re-ID dataset, including 10,862 identities with more than 228k images. Compared with existing datasets, LaST presents more challenging and high-diversity re-ID settings, and significantly larger spatial and temporal ranges. For instance, each person can appear in different cities or countries, and in various time slots from daytime to night, and in different seasons from spring to winter. To our best knowledge, LaST is a novel person re-ID dataset with the largest spatio-temporal ranges. Based on LaST, we verified its challenge by conducting a comprehensive performance evaluation of 14 re-ID algorithms. We further propose an easy-to-implement baseline that works well on such challenging re-ID setting. We also verified that models pre-trained on LaST can generalize well on existing datasets with short-term and cloth-changing scenarios. We expect LaST to inspire future works toward more realistic and challenging re-ID tasks. More information about the dataset is available at https://github.com/shuxjweb/last.git.
To accommodate the unprecedented increase of commercial airlines over the next ten years, the Next Generation Air Transportation System (NextGen) has been implemented in the USA that records large-scale Air Traffic Management (ATM) data to make air t ravel safer, more efficient, and more economical. A key role of collaborative decision making for air traffic scheduling and airspace resource management is the accurate prediction of flight delay. There has been a lot of attempts to apply data-driven methods such as machine learning to forecast flight delay situation using air traffic data of departures and arrivals. However, most of them omit en-route spatial information of airlines and temporal correlation between serial flights which results in inaccuracy prediction. In this paper, we present a novel aviation delay prediction system based on stacked Long Short-Term Memory (LSTM) networks for commercial flights. The system learns from historical trajectories from automatic dependent surveillance-broadcast (ADS-B) messages and uses the correlative geolocations to collect indispensable features such as climatic elements, air traffic, airspace, and human factors data along posterior routes. These features are integrated and then are fed into our proposed regression model. The latent spatio-temporal patterns of data are abstracted and learned in the LSTM architecture. Compared with previous schemes, our approach is demonstrated to be more robust and accurate for large hub airports.
Large-area crop classification using multi-spectral imagery is a widely studied problem for several decades and is generally addressed using classical Random Forest classifier. Recently, deep convolutional neural networks (DCNN) have been proposed. H owever, these methods only achieved results comparable with Random Forest. In this work, we present a novel CNN based architecture for large-area crop classification. Our methodology combines both spatio-temporal analysis via 3D CNN as well as temporal analysis via 1D CNN. We evaluated the efficacy of our approach on Yolo and Imperial county benchmark datasets. Our combined strategy outperforms both classical as well as recent DCNN based methods in terms of classification accuracy by 2% while maintaining a minimum number of parameters and the lowest inference time.
Real-world spatio-temporal data is often incomplete or inaccurate due to various data loading delays. For example, a location-disease-time tensor of case counts can have multiple delayed updates of recent temporal slices for some locations or disease s. Recovering such missing or noisy (under-reported) elements of the input tensor can be viewed as a generalized tensor completion problem. Existing tensor completion methods usually assume that i) missing elements are randomly distributed and ii) noise for each tensor element is i.i.d. zero-mean. Both assumptions can be violated for spatio-temporal tensor data. We often observe multip
An ever-important issue is protecting infrastructure and other valuable targets from a range of threats from vandalism to theft to piracy to terrorism. The defender can rarely afford the needed resources for a 100% protection. Thus, the key question is, how to provide the best protection using the limited available resources. We study a practically important class of security games that is played out in space and time, with targets and patrols moving on a real line. A central open question here is whether the Nash equilibrium (i.e., the minimax strategy of the defender) can be computed in polynomial time. We resolve this question in the affirmative. Our algorithm runs in time polynomial in the input size, and only polylogarithmic in the number of possible patrol locations (M). Further, we provide a continuous extension in which patrol locations can take arbitrary real values. Prior work obtained polynomial-time algorithms only under a substantial assumption, e.g., a constant number of rounds. Further, all these algorithms have running times polynomial in M, which can be very large.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا