ترغب بنشر مسار تعليمي؟ اضغط هنا

The Feynman rules for the SMEFT in the background field gauge

47   0   0.0 ( 0 )
 نشر من قبل Tyler Corbett
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف T. Corbett




اسأل ChatGPT حول البحث

We present a package for FeynRules which derives the Feynman rules for the Standard Model Effective Field Theory up to dimension-six using the background field method for gauge fixing. The package includes operators which shift the kinetic and mass terms of the Lagrangian up to dimension-eight and including dimension-six squared effects consistently. To the best of the authors knowledge this is the first publicly available package to include dimension-six squared effects consistently. The package is validated in a partner publication by analyzing the Ward Identities at dimension-six and one-loop order. We also extend the partner work in this article by including the dimension-six squared effects further demonstrating the consistency of their implementation. In doing so we find that failure to consistently include field shifts to dimension-six squared causes a breakdown in the Ward identities implying concerns about many calculations in the literature which do not properly incorporate these effects. The FeynRules files, as well as Mathematica notebooks performing the relevant calculations, can be downloaded from the FeynRules website and are included as ancillary files to this publication.

قيم البحث

اقرأ أيضاً

We present the complete set of Feynman rules producing the rational terms of kind R_2 needed to perform any 1-loop calculation in the Electroweak Standard Model. Our formulae are given both in the R_xi gauge and in the Unitary gauge, therefore comple ting the results in the t Hooft-Feynman gauge already presented in a previous publication. As a consistency check, we verified, in the case of the process H -> gamma gamma and in a few other physical cases, the independence of the total Rational Part R_1+R_2 on the chosen gauge. In addition, we explicitly checked the equivalence of the limits xi -> infinity after or before the loop momentum integration in the definition of the Unitary gauge at 1-loop.
52 - A. Semenov 2008
The LanHEP program version 3.0 for Feynman rules generation from the Lagrangian is described. It reads the Lagrangian written in a compact form, close to the one used in publications. It means that Lagrangian terms can be written with summation over indices of broken symmetries and using special symbols for complicated expressions, such as covariant derivative and strength tensor for gauge fields. Supersymmetric theories can be described using the superpotential formalism and the 2-component fermion notation. The output is Feynman rules in terms of physical fields and independent parameters in the form of CompHEP model files, which allows one to start calculations of processes in the new physical model. Alternatively, Feynman rules can be generated in FeynArts format or as LaTeX table. One-loop counterterms can be generated in FeynArts format.
We determine the Feynman rules for the minimal type A higher-spin gauge theory on AdS$_{d+1}$ at cubic order. In particular, we establish the quantum action at cubic order in de Donder gauge, including ghosts. We also give the full de Donder gauge pr opagators of higher-spin gauge fields and their ghosts. This provides all ingredients needed to quantise the theory at cubic order.
Leptoquarks (LQs) have attracted increasing attention within recent years, mainly since they can explain the flavor anomalies found in $R(D^{(*)})$, $b rightarrow s ell^+ ell^-$ transitions and the anomalous magnetic moment of the muon. In this artic le, we lay the groundwork for further automated analyses by presenting the complete Lagrangian and the corresponding set of Feynman rules for scalar leptoquarks. This means we consider the five representations $Phi_1, Phi_{tilde1}, Phi_2, Phi_{tilde2}$ and $Phi_3$ and include the triple and quartic self-interactions, as well as couplings to the Standard Model (SM) fermions, gauge bosons and the Higgs. The calculations are performed using FeynRules and all model files are publicly available online at https://gitlab.com/lucschnell/SLQrules.
378 - Dmitri Petrov 2000
We extend our new approach for numeric evaluation of Feynman diagrams to integrals that include fermionic and vector propagators. In this initial discussion we begin by deriving the Sinc function representation for the propagators of spin-1/2 and spi n-1 fields and exploring their properties. We show that the attributes of the spin-0 propagator which allowed us to derive the Sinc function representation for scalar field Feynman integrals are shared by fields with non-zero spin. We then investigate the application of the Sinc function representation to simple QED diagrams, including first order corrections to the propagators and the vertex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا