ﻻ يوجد ملخص باللغة العربية
Leptoquarks (LQs) have attracted increasing attention within recent years, mainly since they can explain the flavor anomalies found in $R(D^{(*)})$, $b rightarrow s ell^+ ell^-$ transitions and the anomalous magnetic moment of the muon. In this article, we lay the groundwork for further automated analyses by presenting the complete Lagrangian and the corresponding set of Feynman rules for scalar leptoquarks. This means we consider the five representations $Phi_1, Phi_{tilde1}, Phi_2, Phi_{tilde2}$ and $Phi_3$ and include the triple and quartic self-interactions, as well as couplings to the Standard Model (SM) fermions, gauge bosons and the Higgs. The calculations are performed using FeynRules and all model files are publicly available online at https://gitlab.com/lucschnell/SLQrules.
We examine new aspects of leptoquark (LQ) phenomenology using effective field theory (EFT). We construct a complete set of leading effective operators involving SU(2) singlets scalar LQ and the SM fields up to dimension six. We show that, while the r
We perform a complete study of the low-energy phenomenology of $S_1$ and $S_3$ lepto-quarks, aimed at addressing the observed deviations in $B$-meson decays and the muon magnetic dipole moment. Leptoquark contributions to observables are computed at
The LHC search strategies for leptoquarks that couple dominantly to a top quark are different than for the ones that couple mostly to the light quarks. We consider charge $1/3$ ($phi_1$) and $5/3$ ($phi_5$) scalar leptoquarks that can decay to a top
In recent years, intriguing hints for the violation of lepton flavour universality have accumulated. In particular, deviations from the Standard-Model (SM) predictions in $Bto D^{(*)}tau u/Bto D^{(*)}ell u$, in the anomalous magnetic moment of the mu
In this paper we present the complete one-loop matching conditions, up to dimension-six operators of the Standard Model effective field theory, resulting by integrating out the two scalar leptoquarks $S_{1}$ and $S_{3}$. This allows a phenomenologica