ﻻ يوجد ملخص باللغة العربية
The Internet of Things (IoT) has been growing rapidly in recent years. With the appearance of 5G, it is expected to become even more indispensable to peoples lives. In accordance with the increase of Distributed Denial-of-Service (DDoS) attacks from IoT devices, DDoS defense has become a hot research topic. DDoS detection mechanisms executed on routers and SDN environments have been intensely studied. However, these methods have the disadvantage of requiring the cost and performance of the devices. In addition, there is no existing DDoS mitigation algorithm on the network edge that can be performed with the low-cost and low performance equipments. Therefore, this paper proposes a light-weight DDoS mitigation scheme at the network edge using limited resources of inexpensive devices such as home gateways. The goal of the proposed scheme is to simply detect and mitigate flooding attacks. It utilizes unused queue resources to detect malicious flows by random shuffling of queue allocation and discard the packets of the detected flows. The performance of the proposed scheme was confirmed via theoretical analysis and computer simulation. The simulation results match the theoretical results and the proposed algorithm can efficiently detect malicious flows using limited resources.
In contrast to the classic fashion for designing distributed end-to-end (e2e) TCP schemes for cellular networks (CN), we explore another design space by having the CN assist the task of the transport control. We show that in the emerging cellular arc
Motivated by a web-server model, we present a queueing network consisting of two layers. The first layer incorporates the arrival of customers at a network of two single-server nodes. We assume that the inter-arrival and the service times have genera
The proliferation of highly capable mobile devices such as smartphones and tablets has significantly increased the demand for wireless access. Software defined network (SDN) at edge is viewed as one promising technology to simplify the traffic offloa
In this paper, we describe a fast and light-weight portrait segmentation method based on a new highly light-weight backbone (HLB) architecture. The core element of HLB is a bottleneck-based factorized block (BFB) that has much fewer parameters than e
Distributed Denial-of-Service (DDoS) attacks are a major problem in the Internet today. In one form of a DDoS attack, a large number of compromised hosts send unwanted traffic to the victim, thus exhausting the resources of the victim and preventing