ترغب بنشر مسار تعليمي؟ اضغط هنا

Prediction of pseudogap formation due to $d$-wave bond-order in organic superconductor $kappa$-(BEDT-TTF)$_2$X

66   0   0.0 ( 0 )
 نشر من قبل Rina Tazai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rich hidden unconventional orders with pseudogap formation, such as the inter-site bond-order (BO), attract increasing attention in condensed matter physics. Here, we investigate the hidden order formation in organic unconventional superconductor $kappa$-(BEDT-TTF)$_2$X. We predict the formation of $d$-wave BO at wavelength $q=Q_B=(delta,delta)$ ($delta=0.38pi$) for the first time, based on both the functional renormalization group (fRG) and the density-wave equation theories. The origin of the BO is the quantum interference among antiferromagnetic spin fluctuations. This prediction leads to distinct pseudogap-like reduction in the NMR $1/T_1$ relaxation rate and in the density-of-states, consistently with essential experimental reports. The present theory would be applicable for other strongly correlated metals with pseudogap formation.



قيم البحث

اقرأ أيضاً

The organic charge-transfer salt $kappa$-(BEDT-TTF)$_{2}$Hg(SCN)$_{2}$Br is a quasi two-dimensional metal with a half-filled conduction band at ambient conditions. When cooled below $T=80$ K it undergoes a pronounced transition to an insulating phase where the resistivity increases many orders of magnitude. In order to elucidate the nature of this metal-insulator transition we have performed comprehensive transport, dielectric and optical investigations. The findings are compared with other dimerized $kappa$-(BEDT-TTF) salts, in particular the Cl-analogue, where a charge-order transition takes place at $T_{rm CO}=30$ K.
The density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, measured by scanning tunneling spectroscopy on textit{in-situ} cleaved surfaces, reveals a logarithmic suppression near the Fermi edge persisting above the cri tical temperature $T_mathrm{c}$. A soft Hubbard gap as predicted by the Anderson-Hubbard model for systems with disorder exactly describes the experimentally observed suppression. The electronic disorder also explains the diminished coherence peaks of the quasiparticle density of states below $T_mathrm{c}$.
Low temperature scanning tunneling spectroscopy reveals the local density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, that was cut in-situ in ultra-high vacuum perpendicular to the superconducting BEDT-TTF layers. T he spectra confirm that superconductivity is confined to the conducting BEDT-TTF layers, while the Cu[N(CN)$_2$]Br anion layers are insulating. The density of states comprises a twofold superconducting gap, which is attributed to the two separated bands crossing the Fermi surface.
Single crystals of the layered organic type II superconductor, $kappa$-(BEDT-TTF)$_{2}$Cu(NCS)$_{2}$, have been studied in magnetic fields of up to 33 T and at temperatures between 0.5 K and 11 K using a compact differential susceptometer. When the m agnetic field lies precisely in the quasi-two-dimensional planes of the material, there is strong evidence for a phase transition from the superconducting mixed state into a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, manisfested as a change in the rigidity of the vortex system. The behaviour of the transition as a function of temperature is in good agreement with theoretical predictions.
148 - K. Sano , T. Sasaki , N. Yoneyama 2010
The effect of disorder on the electronic properties near the Mott transition is studied in an organic superconductor $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br, which is systematically irradiated by X-ray. We observe that X-ray irradiation causes Ande rson-type electron localization due to molecular disorder. The resistivity at low temperatures demonstrates variable range hopping conduction with Coulomb interaction. The experimental results show clearly that the electron localization by disorder is enhanced by the Coulomb interaction near the Mott transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا