ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron localization near Mott transition in organic superconductor $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}]$Br

129   0   0.0 ( 0 )
 نشر من قبل Takahiko Sasaki
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of disorder on the electronic properties near the Mott transition is studied in an organic superconductor $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br, which is systematically irradiated by X-ray. We observe that X-ray irradiation causes Anderson-type electron localization due to molecular disorder. The resistivity at low temperatures demonstrates variable range hopping conduction with Coulomb interaction. The experimental results show clearly that the electron localization by disorder is enhanced by the Coulomb interaction near the Mott transition.


قيم البحث

اقرأ أيضاً

The magnetic field effect on the phase diagram of the organic Mott system $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br in which the bandwidth was tuned by the substitution of deuterated molecules was studied by means of the resistivity measurements perf ormed in magnetic fields. The lower critical point of the first-order Mott transition, which ended on the upper critical field $H_{rm c2}$-temperature plane of the superconductivity, was determined experimentally in addition to the previously observed upper critical end point. The lower critical end point moved to a lower temperature with the suppression of $T_{rm c}$ in magnetic fields and the Mott transition recognized so far as the $S$-shaped curve reached $T =$ 0 when $H > H_{rm c2}$ in the end.
Low temperature scanning tunneling spectroscopy reveals the local density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, that was cut in-situ in ultra-high vacuum perpendicular to the superconducting BEDT-TTF layers. T he spectra confirm that superconductivity is confined to the conducting BEDT-TTF layers, while the Cu[N(CN)$_2$]Br anion layers are insulating. The density of states comprises a twofold superconducting gap, which is attributed to the two separated bands crossing the Fermi surface.
We investigated the infrared optical spectra of an organic dimer Mott insulator $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Cl, which was irradiated with X-rays. We observed that the irradiation caused a large spectral weight transfer from the mid-infrare d region, where interband transitions in the dimer and Mott-Hubbard bands take place, to a Drude part in a low-energy region; this caused the Mott gap to collapse. The increase of the Drude part indicates a carrier doping into the Mott insulator due to irradiation defects. The strong redistribution of the spectral weight demonstrates that the organic Mott insulator is very close to the phase border of the bandwidth-controlled Mott transition.
The density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, measured by scanning tunneling spectroscopy on textit{in-situ} cleaved surfaces, reveals a logarithmic suppression near the Fermi edge persisting above the cri tical temperature $T_mathrm{c}$. A soft Hubbard gap as predicted by the Anderson-Hubbard model for systems with disorder exactly describes the experimentally observed suppression. The electronic disorder also explains the diminished coherence peaks of the quasiparticle density of states below $T_mathrm{c}$.
120 - F. Kagawa , T. Itou , K. Miyagawa 2003
An organic Mott insulator, $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Cl, was investigated by resistance measurements under continuously controllable He gas pressure. The first-order Mott transition was demonstrated by observation of clear jump in the re sistance variation against pressure. Its critical endpoint at 38 K is featured by vanishing of the resistive jump and critical divergence in pressure derivative of resistance, $|frac{1}{R}frac{partial R}{partial P}|$, which are consistent with the prediction of the dynamical mean field theory and have phenomenological correspondence with the liquid-gas transition. The present results provide the experimental basis for physics of the Mott transition criticality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا