ترغب بنشر مسار تعليمي؟ اضغط هنا

CopyNext: Explicit Span Copying and Alignment in Sequence to Sequence Models

99   0   0.0 ( 0 )
 نشر من قبل Abhinav Singh
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Copy mechanisms are employed in sequence to sequence models (seq2seq) to generate reproductions of words from the input to the output. These frameworks, operating at the lexical type level, fail to provide an explicit alignment that records where each token was copied from. Further, they require contiguous token sequences from the input (spans) to be copied individually. We present a model with an explicit token-level copy operation and extend it to copying entire spans. Our model provides hard alignments between spans in the input and output, allowing for nontraditional applications of seq2seq, like information extraction. We demonstrate the approach on Nested Named Entity Recognition, achieving near state-of-the-art accuracy with an order of magnitude increase in decoding speed.

قيم البحث

اقرأ أيضاً

Sequence-to-sequence models are a powerful workhorse of NLP. Most variants employ a softmax transformation in both their attention mechanism and output layer, leading to dense alignments and strictly positive output probabilities. This density is was teful, making models less interpretable and assigning probability mass to many implausible outputs. In this paper, we propose sparse sequence-to-sequence models, rooted in a new family of $alpha$-entmax transformations, which includes softmax and sparsemax as particular cases, and is sparse for any $alpha > 1$. We provide fast algorithms to evaluate these transformations and their gradients, which scale well for large vocabulary sizes. Our models are able to produce sparse alignments and to assign nonzero probability to a short list of plausible outputs, sometimes rendering beam search exact. Experiments on morphological inflection and machine translation reveal consistent gains over dense models.
Machine Comprehension (MC) is one of the core problems in natural language processing, requiring both understanding of the natural language and knowledge about the world. Rapid progress has been made since the release of several benchmark datasets, a nd recently the state-of-the-art models even surpass human performance on the well-known SQuAD evaluation. In this paper, we transfer knowledge learned from machine comprehension to the sequence-to-sequence tasks to deepen the understanding of the text. We propose MacNet: a novel encoder-decoder supplementary architecture to the widely used attention-based sequence-to-sequence models. Experiments on neural machine translation (NMT) and abstractive text summarization show that our proposed framework can significantly improve the performance of the baseline models, and our method for the abstractive text summarization achieves the state-of-the-art results on the Gigaword dataset.
In many machine learning scenarios, supervision by gold labels is not available and consequently neural models cannot be trained directly by maximum likelihood estimation (MLE). In a weak supervision scenario, metric-augmented objectives can be emplo yed to assign feedback to model outputs, which can be used to extract a supervision signal for training. We present several objectives for two separate weakly supervised tasks, machine translation and semantic parsing. We show that objectives should actively discourage negative outputs in addition to promoting a surrogate gold structure. This notion of bipolarity is naturally present in ramp loss objectives, which we adapt to neural models. We show that bipolar ramp loss objectives outperform other non-bipolar ramp loss objectives and minimum risk training (MRT) on both weakly supervised tasks, as well as on a supervised machine translation task. Additionally, we introduce a novel token-level ramp loss objective, which is able to outperform even the best sequence-level ramp loss on both weakly supervised tasks.
Encoder layer fusion (EncoderFusion) is a technique to fuse all the encoder layers (instead of the uppermost layer) for sequence-to-sequence (Seq2Seq) models, which has proven effective on various NLP tasks. However, it is still not entirely clear wh y and when EncoderFusion should work. In this paper, our main contribution is to take a step further in understanding EncoderFusion. Many of previous studies believe that the success of EncoderFusion comes from exploiting surface and syntactic information embedded in lower encoder layers. Unlike them, we find that the encoder embedding layer is more important than other intermediate encoder layers. In addition, the uppermost decoder layer consistently pays more attention to the encoder embedding layer across NLP tasks. Based on this observation, we propose a simple fusion method, SurfaceFusion, by fusing only the encoder embedding layer for the softmax layer. Experimental results show that SurfaceFusion outperforms EncoderFusion on several NLP benchmarks, including machine translation, text summarization, and grammatical error correction. It obtains the state-of-the-art performance on WMT16 Romanian-English and WMT14 English-French translation tasks. Extensive analyses reveal that SurfaceFusion learns more expressive bilingual word embeddings by building a closer relationship between relevant source and target embedding. Source code is freely available at https://github.com/SunbowLiu/SurfaceFusion.
Label smoothing has been shown to be an effective regularization strategy in classification, that prevents overfitting and helps in label de-noising. However, extending such methods directly to seq2seq settings, such as Machine Translation, is challe nging: the large target output space of such problems makes it intractable to apply label smoothing over all possible outputs. Most existing approaches for seq2seq settings either do token level smoothing, or smooth over sequences generated by randomly substituting tokens in the target sequence. Unlike these works, in this paper, we propose a technique that smooths over emph{well formed} relevant sequences that not only have sufficient n-gram overlap with the target sequence, but are also emph{semantically similar}. Our method shows a consistent and significant improvement over the state-of-the-art techniques on different datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا