ﻻ يوجد ملخص باللغة العربية
In the light of the recent announcement of the discovery of the potential biosignature phosphine in the atmosphere of Venus I present an independent reanalysis of the original JCMT data to assess the statistical reliability of the detection. Two line detection methods are explored, low order polynomial fits and higher order multiple polynomial fits. A non-parametric bootstrap analysis reveals that neither line detection method is able to recover a statistically significant detection. Similar to the results of other reanalyses of ALMA Venus spectra, the polynomial fitting process results in false positive detections in the JCMT spectrum. There is thus no significant evidence for phosphine absorption in the JCMT Venus spectra.
Context: ALMA observations of Venus at 267 GHz have been presented in the literature that show the apparent presence of phosphine (PH3) in its atmosphere. Phosphine has currently no evident production routes on the planets surface or in its atmospher
The detection of phosphine (PH3) in the atmosphere of Venus has been recently reported based on millimeter-wave radio observations (Greaves et al. 2020), and its re-analyses (Greaves et al. 2021a/b). In this Matters Arising we perform an independent
We recover PH3 in the atmosphere of Venus in data taken with ALMA, using three different calibration methods. The whole-planet signal is recovered with 5.4{sigma} confidence using Venus bandpass self-calibration, and two simpler approaches are shown
We published spectra of phosphine molecules in Venus clouds, following open-science principles in releasing data and scripts (with community input leading to ALMA re-processing, now benefiting multiple projects). Some misconceptions about de-trending
Recently published ALMA observations suggest the presence of 20 ppb PH$_3$ in the upper clouds of Venus. This is an unexpected result, as PH$_3$ does not have a readily apparent source and should be rapidly photochemically destroyed according to our