ﻻ يوجد ملخص باللغة العربية
Recently, falsified images have been found in papers involved in research misconducts. However, although there have been many image forgery detection methods, none of them was designed for molecular-biological experiment images. In this paper, we proposed a fast blind inquiry method, named FBI$_{GEL}$, for integrity of images obtained from two common sorts of molecular experiments, i.e., western blot (WB) and polymerase chain reaction (PCR). Based on an optimized pseudo-background capable of highlighting local residues, FBI$_{GEL}$ can reveal traceable vestiges suggesting inappropriate local modifications on WB/PCR images. Additionally, because the optimized pseudo-background is derived according to a closed-form solution, FBI$_{GEL}$ is computationally efficient and thus suitable for large scale inquiry tasks for WB/PCR image integrity. We applied FBI$_{GEL}$ on several papers questioned by the public on textbf{PUBPEER}, and our results show that figures of those papers indeed contain doubtful unnatural patterns.
Artificial Intelligence (AI)-powered pathology is a revolutionary step in the world of digital pathology and shows great promise to increase both diagnosis accuracy and efficiency. However, defocus and motion blur can obscure tissue or cell character
the MIAPE Gel Electrophoresis (MIAPE-GE) guidelines specify the minimum information that should be provided when reporting the use of n-dimensional gel electrophoresis in a proteomics experiment. Developed through a joint effort between the gel-based
Ground Penetrating Radar (GPR) is an effective non-destructive evaluation (NDE) device for inspecting and surveying subsurface objects (i.e., rebars, utility pipes) in complex environments. However, the current practice for GPR data collection requir
Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising met
Blind image deblurring is an important yet very challenging problem in low-level vision. Traditional optimization based methods generally formulate this task as a maximum-a-posteriori estimation or variational inference problem, whose performance hig