ترغب بنشر مسار تعليمي؟ اضغط هنا

Robotic Inspection and 3D GPR-based Reconstruction for Underground Utilities

137   0   0.0 ( 0 )
 نشر من قبل Jinglun Feng
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Ground Penetrating Radar (GPR) is an effective non-destructive evaluation (NDE) device for inspecting and surveying subsurface objects (i.e., rebars, utility pipes) in complex environments. However, the current practice for GPR data collection requires a human inspector to move a GPR cart along pre-marked grid lines and record the GPR data in both X and Y directions for post-processing by 3D GPR imaging software. It is time-consuming and tedious work to survey a large area. Furthermore, identifying the subsurface targets depends on the knowledge of an experienced engineer, who has to make manual and subjective interpretation that limits the GPR applications, especially in large-scale scenarios. In addition, the current GPR imaging technology is not intuitive, and not for normal users to understand, and not friendly to visualize. To address the above challenges, this paper presents a novel robotic system to collect GPR data, interpret GPR data, localize the underground utilities, reconstruct and visualize the underground objects dense point cloud model in a user-friendly manner. This system is composed of three modules: 1) a vision-aided Omni-directional robotic data collection platform, which enables the GPR antenna to scan the target area freely with an arbitrary trajectory while using a visual-inertial-based positioning module tags the GPR measurements with positioning information; 2) a deep neural network (DNN) migration module to interpret the raw GPR B-scan image into a cross-section of object model; 3) a DNN-based 3D reconstruction method, i.e., GPRNet, to generate underground utility model represented as fine 3D point cloud. Comparative studies on synthetic and field GPR raw data with various incompleteness and noise are performed.



قيم البحث

اقرأ أيضاً

Learning-based 3D object reconstruction enables single- or few-shot estimation of 3D object models. For robotics, this holds the potential to allow model-based methods to rapidly adapt to novel objects and scenes. Existing 3D reconstruction technique s optimize for visual reconstruction fidelity, typically measured by chamfer distance or voxel IOU. We find that when applied to realistic, cluttered robotics environments, these systems produce reconstructions with low physical realism, resulting in poor task performance when used for model-based control. We propose ARM, an amodal 3D reconstruction system that introduces (1) a stability prior over object shapes, (2) a connectivity prior, and (3) a multi-channel input representation that allows for reasoning over relationships between groups of objects. By using these priors over the physical properties of objects, our system improves reconstruction quality not just by standard visual metrics, but also performance of model-based control on a variety of robotics manipulation tasks in challenging, cluttered environments. Code is available at github.com/wagnew3/ARM.
mmWave radar has been shown as an effective sensing technique in low visibility, smoke, dusty, and dense fog environment. However tapping the potential of radar sensing to reconstruct 3D object shapes remains a great challenge, due to the characteris tics of radar data such as sparsity, low resolution, specularity, high noise, and multi-path induced shadow reflections and artifacts. In this paper we propose 3D Reconstruction and Imaging via mmWave Radar (3DRIMR), a deep learning based architecture that reconstructs 3D shape of an object in dense detailed point cloud format, based on sparse raw mmWave radar intensity data. The architecture consists of two back-to-back conditional GAN deep neural networks: the first generator network generates 2D depth images based on raw radar intensity data, and the second generator network outputs 3D point clouds based on the results of the first generator. The architecture exploits both convolutional neural networks convolutional operation (that extracts local structure neighborhood information) and the efficiency and detailed geometry capture capability of point clouds (other than costly voxelization of 3D space or distance fields). Our experiments have demonstrated 3DRIMRs effectiveness in reconstructing 3D objects, and its performance improvement over standard techniques.
Gated imaging is an emerging sensor technology for self-driving cars that provides high-contrast images even under adverse weather influence. It has been shown that this technology can even generate high-fidelity dense depth maps with accuracy compar able to scanning LiDAR systems. In this work, we extend the recent Gated2Depth framework with aleatoric uncertainty providing an additional confidence measure for the depth estimates. This confidence can help to filter out uncertain estimations in regions without any illumination. Moreover, we show that training on dense depth maps generated by LiDAR depth completion algorithms can further improve the performance.
Automatic 3D neuron reconstruction is critical for analysing the morphology and functionality of neurons in brain circuit activities. However, the performance of existing tracing algorithms is hinged by the low image quality. Recently, a series of de ep learning based segmentation methods have been proposed to improve the quality of raw 3D optical image stacks by removing noises and restoring neuronal structures from low-contrast background. Due to the variety of neuron morphology and the lack of large neuron datasets, most of current neuron segmentation models rely on introducing complex and specially-designed submodules to a base architecture with the aim of encoding better feature representations. Though successful, extra burden would be put on computation during inference. Therefore, rather than modifying the base network, we shift our focus to the dataset itself. The encoder-decoder backbone used in most neuron segmentation models attends only intra-volume voxel points to learn structural features of neurons but neglect the shared intrinsic semantic features of voxels belonging to the same category among different volumes, which is also important for expressive representation learning. Hence, to better utilise the scarce dataset, we propose to explicitly exploit such intrinsic features of voxels through a novel voxel-level cross-volume representation learning paradigm on the basis of an encoder-decoder segmentation model. Our method introduces no extra cost during inference. Evaluated on 42 3D neuron images from BigNeuron project, our proposed method is demonstrated to improve the learning ability of the original segmentation model and further enhancing the reconstruction performance.
Fast data acquisition in Magnetic Resonance Imaging (MRI) is vastly in demand and scan time directly depends on the number of acquired k-space samples. The data-driven methods based on deep neural networks have resulted in promising improvements, com pared to the conventional methods, in image reconstruction algorithms. The connection between deep neural network and Ordinary Differential Equation (ODE) has been observed and studied recently. The studies show that different residual networks can be interpreted as Euler discretization of an ODE. In this paper, we propose an ODE-based deep network for MRI reconstruction to enable the rapid acquisition of MR images with improved image quality. Our results with undersampled data demonstrate that our method can deliver higher quality images in comparison to the reconstruction methods based on the standard UNet network and Residual network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا