ﻻ يوجد ملخص باللغة العربية
A new approach for designing bilayer and multi-layer LDPC codes is proposed and studied in the asymptotic regime. The ensembles are defined through individual uni-variate degree distributions, one for each layer. We present a construction that: 1) enables low-complexity decoding for high-SNR channel instances, 2) provably approaches capacity for low-SNR instances, 3) scales linearly (in terms of design complexity) in the number of layers. For the setup where decoding the second layer is significantly more costly than the first layer, we propose an optimal-cost decoding schedule and study the trade-off between code rate and decoding cost.
This paper is focused on the derivation of some universal properties of capacity-approaching low-density parity-check (LDPC) code ensembles whose transmission takes place over memoryless binary-input output-symmetric (MBIOS) channels. Properties of t
This paper considers density evolution for lowdensity parity-check (LDPC) and multi-edge type low-density parity-check (MET-LDPC) codes over the binary input additive white Gaussian noise channel. We first analyze three singleparameter Gaussian appro
This work addresses the physical layer channel code design for an uncoordinated, frame- and slot-asynchronous random access protocol. Starting from the observation that collisions between two users yield very specific interference patterns, we define
This paper investigates the design and performance of delayed bit-interleaved coded modulation (DBICM) with low-density parity-check (LDPC) codes. For Gray labeled square $M$-ary quadrature amplitude modulation (QAM) constellations, we investigate th
This paper summarizes the design of a programmable processor with transport triggered architecture (TTA) for decoding LDPC and turbo codes. The processor architecture is designed in such a manner that it can be programmed for LDPC or turbo decoding f