ﻻ يوجد ملخص باللغة العربية
This paper summarizes the design of a programmable processor with transport triggered architecture (TTA) for decoding LDPC and turbo codes. The processor architecture is designed in such a manner that it can be programmed for LDPC or turbo decoding for the purpose of internetworking and roaming between different networks. The standard trellis based maximum a posteriori (MAP) algorithm is used for turbo decoding. Unlike most other implementations, a supercode based sum-product algorithm is used for the check node message computation for LDPC decoding. This approach ensures the highest hardware utilization of the processor architecture for the two different algorithms. Up to our knowledge, this is the first attempt to design a TTA processor for the LDPC decoder. The processor is programmed with a high level language to meet the time-to-market requirement. The optimization techniques and the usage of the function units for both algorithms are explained in detail. The processor achieves 22.64 Mbps throughput for turbo decoding with a single iteration and 10.12 Mbps throughput for LDPC decoding with five iterations for a clock frequency of 200 MHz.
Min-Sum decoding is widely used for decoding LDPC codes in many modern digital video broadcasting decoding due to its relative low complexity and robustness against quantization error. However, the suboptimal performance of the Min-Sum affects the in
In this paper, we propose a novel low complexity scaling strategy of min-sum decoding algorithm for irregular LDPC codes. In the proposed method, we generalize our previously proposed simplified Variable Scaled Min-Sum (SVS-min-sum) by replacing the
In this paper, a new method for decoding Low Density Parity Check (LDPC) codes, based on Multi-Layer Perceptron (MLP) neural networks is proposed. Due to the fact that in neural networks all procedures are processed in parallel, this method can be co
This paper presents the FPGA hardware design of a turbo decoder for the cdma2000 standard. The work includes a study and mathematical analysis of the turbo decoding process, based on the MAX-Log-MAP algorithm. Results of decoding for a packet size of
This work proposes a tractable estimation of the maximum a posteriori (MAP) threshold of various families of sparse-graph code ensembles, by using an approximation for the extended belief propagation generalized extrinsic information transfer (EBP-GE