ﻻ يوجد ملخص باللغة العربية
Improving the data rate of machine-type communication (MTC) is essential in supporting emerging Internet of things (IoT) applications ranging from real-time surveillance to edge machine learning. To this end, in this paper we propose a resource allocation approach for uplink transmissions within a random access procedure in MTC by exploiting multichannel selection diversity, coined explore-before-talk (EBT). Each user in EBT first sends pilot signals through multiple channels that are initially allocated by a base station (BS) for exploration, and then the BS informs a subset of initially allocated channels that are associated with high signal-to-noise ratios (SNRs) for data packet transmission by the user while releasing the rest of the channels for other users. Consequently, EBT exploits a multichannel selection diversity gain during data packet transmission, at the cost of exploration during pilot transmission. We optimize this exploration-exploitation trade-off, by deriving closed-form mean data rate and resource outage probability expressions. Numerical results corroborate that EBT achieves a higher mean data rate while satisfying the same outage constraint, compared to a conventional MTC protocol without exploration.
Effective capacity (EC) determines the maximum communication rate subject to a particular delay constraint. In this work, we analyze the EC of ultra reliable Machine Type Communication (MTC) networks operating in the finite blocklength (FB) regime. F
In this work new achievable rates are derived, for the uplink channel of a cellular network with joint multicell processing, where unlike previous results, the ideal backhaul network has finite capacity per-cell. Namely, the cell sites are linked to
The standard approach to the design of individual space-time codes is based on optimizing diversity and coding gains. This geometric approach leads to remarkable examples, such as perfect space-time block codes, for which the complexity of Maximum Li
Integrating unmanned aerial vehicles (UAVs) into the cellular network as new aerial users is a promising solution to meet their ever-increasing communication demands in a plethora of applications. Due to the high UAV altitude, the channels between UA
We consider a channel-independent decoder which is for i.i.d. random codes what the maximum mutual-information decoder is for constant composition codes. We show that this decoder results in exactly the same i.i.d. random coding error exponent and al