ترغب بنشر مسار تعليمي؟ اضغط هنا

Explore-Before-Talk: Multichannel Selection Diversity for Uplink Transmissions in Machine-Type Communication

59   0   0.0 ( 0 )
 نشر من قبل Jinho Choi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Improving the data rate of machine-type communication (MTC) is essential in supporting emerging Internet of things (IoT) applications ranging from real-time surveillance to edge machine learning. To this end, in this paper we propose a resource allocation approach for uplink transmissions within a random access procedure in MTC by exploiting multichannel selection diversity, coined explore-before-talk (EBT). Each user in EBT first sends pilot signals through multiple channels that are initially allocated by a base station (BS) for exploration, and then the BS informs a subset of initially allocated channels that are associated with high signal-to-noise ratios (SNRs) for data packet transmission by the user while releasing the rest of the channels for other users. Consequently, EBT exploits a multichannel selection diversity gain during data packet transmission, at the cost of exploration during pilot transmission. We optimize this exploration-exploitation trade-off, by deriving closed-form mean data rate and resource outage probability expressions. Numerical results corroborate that EBT achieves a higher mean data rate while satisfying the same outage constraint, compared to a conventional MTC protocol without exploration.



قيم البحث

اقرأ أيضاً

Effective capacity (EC) determines the maximum communication rate subject to a particular delay constraint. In this work, we analyze the EC of ultra reliable Machine Type Communication (MTC) networks operating in the finite blocklength (FB) regime. F irst, we present a closed form approximation for EC in quasi-static Rayleigh fading channels. Our analysis determines the upper bounds for EC and delay constraint when varying transmission power. Finally, we characterize the power-delay trade-off for fixed EC and propose an optimum power allocation scheme which exploits the asymptotic behavior of EC in the high SNR regime. The results illustrate that the proposed scheme provides significant power saving with a negligible loss in EC.
In this work new achievable rates are derived, for the uplink channel of a cellular network with joint multicell processing, where unlike previous results, the ideal backhaul network has finite capacity per-cell. Namely, the cell sites are linked to the central joint processor via lossless links with finite capacity. The cellular network is abstracted by symmetric models, which render analytical treatment plausible. For this idealistic model family, achievable rates are presented for cell-sites that use compress-and-forward schemes combined with local decoding, for both Gaussian and fading channels. The rates are given in closed form for the classical Wyner model and the soft-handover model. These rates are then demonstrated to be rather close to the optimal unlimited backhaul joint processing rates, already for modest backhaul capacities, supporting the potential gain offered by the joint multicell processing approach. Particular attention is also given to the low-SNR characterization of these rates through which the effect of the limited backhaul network is explicitly revealed. In addition, the rate at which the backhaul capacity should scale in order to maintain the original high-SNR characterization of an unlimited backhaul capacity system is found.
The standard approach to the design of individual space-time codes is based on optimizing diversity and coding gains. This geometric approach leads to remarkable examples, such as perfect space-time block codes, for which the complexity of Maximum Li kelihood (ML) decoding is considerable. Code diversity is an alternative and complementary approach where a small number of feedback bits are used to select from a family of space-time codes. Different codes lead to different induced channels at the receiver, where Channel State Information (CSI) is used to instruct the transmitter how to choose the code. This method of feedback provides gains associated with beamforming while minimizing the number of feedback bits. It complements the standard approach to code design by taking advantage of different (possibly equivalent) realizations of a particular code design. Feedback can be combined with sub-optimal low complexity decoding of the component codes to match ML decoding performance of any individual code in the family. It can also be combined with ML decoding of the component codes to improve performance beyond ML decoding performance of any individual code. One method of implementing code diversity is the use of feedback to adapt the phase of a transmitted signal as shown for 4 by 4 Quasi-Orthogonal Space-Time Block Code (QOSTBC) and multi-user detection using the Alamouti code. Code diversity implemented by selecting from equivalent variants is used to improve ML decoding performance of the Golden code. This paper introduces a family of full rate circulant codes which can be linearly decoded by fourier decomposition of circulant matrices within the code diversity framework. A 3 by 3 circulant code is shown to outperform the Alamouti code at the same transmission rate.
71 - Liang Liu , Shuowen Zhang , 2018
Integrating unmanned aerial vehicles (UAVs) into the cellular network as new aerial users is a promising solution to meet their ever-increasing communication demands in a plethora of applications. Due to the high UAV altitude, the channels between UA Vs and the ground base stations (GBSs) are dominated by the strong line-of-sight (LoS) links, thus severe interference may be generated to/from the GBSs in the uplink/downlink, which renders the interference management with coexisting terrestrial and aerial users a more challenging problem to solve. In this paper, we study the uplink communication from a multi-antenna UAV to a set of GBSs in its signal coverage region. Among these GBSs, we denote available GBSs as the ones that do not serve any terrestrial users at the assigned resource block (RB) of the UAV, and occupied GBSs as the rest that are serving their respectively associated terrestrial users in the same RB. We propose a new cooperative interference cancellation strategy for the multi-beam UAV uplink communication, which aims to eliminate the co-channel interference at each of the occupied GBSs and in the meanwhile maximize the sum-rate to the available GBSs. Specifically, the multi-antenna UAV sends multiple data streams to selected available GBSs, which in turn forward their decoded data streams to their backhaul-connected occupied GBSs for interference cancellation. To draw useful insights, the maximum degrees-of-freedom (DoF) achievable by the multi-beam UAV communication for sum-rate maximization in the high signal-to-noise ratio (SNR) regime is first characterized, subject to the stringent constraint that all the occupied GBSs do not suffer from any interference in the UAVs uplink transmission. Then, based on the DoF-optimal design, the achievable sum-rate at finite SNR is maximized, subject to given maximum allowable interference power constraints at each occupied GBS.
We consider a channel-independent decoder which is for i.i.d. random codes what the maximum mutual-information decoder is for constant composition codes. We show that this decoder results in exactly the same i.i.d. random coding error exponent and al most the same correct-decoding exponent for a given codebook distribution as the maximum-likelihood decoder. We propose an algorithm for computation of the optimal correct-decoding exponent which operates on the corresponding expression for the channel-independent decoder. The proposed algorithm comes in t
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا