ﻻ يوجد ملخص باللغة العربية
Copulas provide a modular parameterization of multivariate distributions that decouples the modeling of marginals from the dependencies between them. Gaussian Mixture Copula Model (GMCM) is a highly flexible copula that can model many kinds of multi-modal dependencies, as well as asymmetric and tail dependencies. They have been effectively used in clustering non-Gaussian data and in Reproducibility Analysis, a meta-analysis method designed to verify the reliability and consistency of multiple high-throughput experiments. Parameter estimation for GMCM is challenging due to its intractable likelihood. The best previous methods have maximized a proxy-likelihood through a Pseudo Expectation Maximization (PEM) algorithm. They have no guarantees of convergence or convergence to the correct parameters. In this paper, we use Automatic Differentiation (AD) tools to develop a method, called AD-GMCM, that can maximize the exact GMCM likelihood. In our simulation studies and experiments with real data, AD-GMCM finds more accurate parameter estimates than PEM and yields better performance in clustering and Reproducibility Analysis. We discuss the advantages of an AD-based approach, to address problems related to monotonic increase of likelihood and parameter identifiability in GMCM. We also analyze, for GMCM, two well-known cases of degeneracy of maximum likelihood in GMM that can lead to spurious clustering solutions. Our analysis shows that, unlike GMM, GMCM is not affected in one of the cases.
We consider clustering based on significance tests for Gaussian Mixture Models (GMMs). Our starting point is the SigClust method developed by Liu et al. (2008), which introduces a test based on the k-means objective (with k = 2) to decide whether the
In recent biomedical scientific problems, it is a fundamental issue to integratively cluster a set of objects from multiple sources of datasets. Such problems are mostly encountered in genomics, where data is collected from various sources, and typic
Poverty is a multidimensional concept often comprising a monetary outcome and other welfare dimensions such as education, subjective well-being or health, that are measured on an ordinal scale. In applied research, multidimensional poverty is ubiquit
In the genomic era, the identification of gene signatures associated with disease is of significant interest. Such signatures are often used to predict clinical outcomes in new patients and aid clinical decision-making. However, recent studies have s
In this paper, a Bayesian semiparametric copula approach is used to model the underlying multivariate distribution $F_{true}$. First, the Dirichlet process is constructed on the unknown marginal distributions of $F_{true}$. Then a Gaussian copula mod