ﻻ يوجد ملخص باللغة العربية
We consider clustering based on significance tests for Gaussian Mixture Models (GMMs). Our starting point is the SigClust method developed by Liu et al. (2008), which introduces a test based on the k-means objective (with k = 2) to decide whether the data should be split into two clusters. When applied recursively, this test yields a method for hierarchical clustering that is equipped with a significance guarantee. We study the limiting distribution and power of this approach in some examples and show that there are large regions of the parameter space where the power is low. We then introduce a new test based on the idea of relative fit. Unlike prior work, we test for whether a mixture of Gaussians provides a better fit relative to a single Gaussian, without assuming that either model is correct. The proposed test has a simple critical value and provides provable error control. One version of our test provides exact, finite sample control of the type I error. We show how our tests can be used for hierarchical clustering as well as in a sequential manner for model selection. We conclude with an extensive simulation study and a cluster analysis of a gene expression dataset.
Variational autoencoders (VAEs) have been shown to be able to generate game levels but require manual exploration of the learned latent space to generate outputs with desired attributes. While conditional VAEs address this by allowing generation to b
Copulas provide a modular parameterization of multivariate distributions that decouples the modeling of marginals from the dependencies between them. Gaussian Mixture Copula Model (GMCM) is a highly flexible copula that can model many kinds of multi-
In many applications, we encounter data on Riemannian manifolds such as torus and rotation groups. Standard statistical procedures for multivariate data are not applicable to such data. In this study, we develop goodness-of-fit testing and interpreta
Networks describe the, often complex, relationships between individual actors. In this work, we address the question of how to determine whether a parametric model, such as a stochastic block model or latent space model, fits a dataset well and will
Let $(Y,(X_i)_{iinmathcal{I}})$ be a zero mean Gaussian vector and $V$ be a subset of $mathcal{I}$. Suppose we are given $n$ i.i.d. replications of the vector $(Y,X)$. We propose a new test for testing that $Y$ is independent of $(X_i)_{iin mathcal{I