ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-lingual Machine Reading Comprehension with Language Branch Knowledge Distillation

94   0   0.0 ( 0 )
 نشر من قبل Ming Gong
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and Vietnamese. Many previous approaches use translation data by translating from a rich-source language, such as English, to low-source languages as auxiliary supervision. However, how to effectively leverage translation data and reduce the impact of noise introduced by translation remains onerous. In this paper, we tackle this challenge and enhance the cross-lingual transferring performance by a novel augmentation approach named Language Branch Machine Reading Comprehension (LBMRC). A language branch is a group of passages in one single language paired with questions in all target languages. We train multiple machine reading comprehension (MRC) models proficient in individual language based on LBMRC. Then, we devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages. Combining the LBMRC and multilingual distillation can be more robust to the data noises, therefore, improving the models cross-lingual ability. Meanwhile, the produced single multilingual model is applicable to all target languages, which saves the cost of training, inference, and maintenance for multiple models. Extensive experiments on two CLMRC benchmarks clearly show the effectiveness of our proposed method.



قيم البحث

اقرأ أيضاً

177 - Gaochen Wu , Bin Xu1 , Yuxin Qin 2021
Extractive Reading Comprehension (ERC) has made tremendous advances enabled by the availability of large-scale high-quality ERC training data. Despite of such rapid progress and widespread application, the datasets in languages other than high-resour ce languages such as English remain scarce. To address this issue, we propose a Cross-Lingual Transposition ReThinking (XLTT) model by modelling existing high-quality extractive reading comprehension datasets in a multilingual environment. To be specific, we present multilingual adaptive attention (MAA) to combine intra-attention and inter-attention to learn more general generalizable semantic and lexical knowledge from each pair of language families. Furthermore, to make full use of existing datasets, we adopt a new training framework to train our model by calculating task-level similarities between each existing dataset and target dataset. The experimental results show that our XLTT model surpasses six baselines on two multilingual ERC benchmarks, especially more effective for low-resource languages with 3.9 and 4.1 average improvement in F1 and EM, respectively.
104 - Kai Sun , Dian Yu , Jianshu Chen 2020
In this paper, we aim to extract commonsense knowledge to improve machine reading comprehension. We propose to represent relations implicitly by situating structured knowledge in a context instead of relying on a pre-defined set of relations, and we call it contextualized knowledge. Each piece of contextualized knowledge consists of a pair of interrelated verbal and nonverbal messages extracted from a script and the scene in which they occur as context to implicitly represent the relation between the verbal and nonverbal messages, which are originally conveyed by different modalities within the script. We propose a two-stage fine-tuning strategy to use the large-scale weakly-labeled data based on a single type of contextualized knowledge and employ a teacher-student paradigm to inject multiple types of contextualized knowledge into a student machine reader. Experimental results demonstrate that our method outperforms a state-of-the-art baseline by a 4.3% improvement in accuracy on the machine reading comprehension dataset C^3, wherein most of the questions require unstated prior knowledge.
Named entity recognition (NER) is a fundamental component in many applications, such as Web Search and Voice Assistants. Although deep neural networks greatly improve the performance of NER, due to the requirement of large amounts of training data, d eep neural networks can hardly scale out to many languages in an industry setting. To tackle this challenge, cross-lingual NER transfers knowledge from a rich-resource language to languages with low resources through pre-trained multilingual language models. Instead of using training data in target languages, cross-lingual NER has to rely on only training data in source languages, and optionally adds the translated training data derived from source languages. However, the existing cross-lingual NER methods do not make good use of rich unlabeled data in target languages, which is relatively easy to collect in industry applications. To address the opportunities and challenges, in this paper we describe our novel practice in Microsoft to leverage such large amounts of unlabeled data in target languages in real production settings. To effectively extract weak supervision signals from the unlabeled data, we develop a novel approach based on the ideas of semi-supervised learning and reinforcement learning. The empirical study on three benchmark data sets verifies that our approach establishes the new state-of-the-art performance with clear edges. Now, the NER techniques reported in this paper are on their way to become a fundamental component for Web ranking, Entity Pane, Answers Triggering, and Question Answering in the Microsoft Bing search engine. Moreover, our techniques will also serve as part of the Spoken Language Understanding module for a commercial voice assistant. We plan to open source the code of the prototype framework after deployment.
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.
292 - Fu Sun , Linyang Li , Xipeng Qiu 2018
Machine reading comprehension with unanswerable questions is a new challenging task for natural language processing. A key subtask is to reliably predict whether the question is unanswerable. In this paper, we propose a unified model, called U-Net, w ith three important components: answer pointer, no-answer pointer, and answer verifier. We introduce a universal node and thus process the question and its context passage as a single contiguous sequence of tokens. The universal node encodes the fused information from both the question and passage, and plays an important role to predict whether the question is answerable and also greatly improves the conciseness of the U-Net. Different from the state-of-art pipeline models, U-Net can be learned in an end-to-end fashion. The experimental results on the SQuAD 2.0 dataset show that U-Net can effectively predict the unanswerability of questions and achieves an F1 score of 71.7 on SQuAD 2.0.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا