ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of a shared spectro-temporal law between sources of repeating fast radio bursts

138   0   0.0 ( 0 )
 نشر من قبل Martin Houde
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spectro-temporal characteristics of two repeating fast radio bursts (FRBs), namely, FRB 20180916B and FRB 20180814A, and combine the results with those from our earlier analysis on FRB 20121102A. The relationship between the frequency drift rate, or slope, of individual sub-bursts and their temporal duration is investigated. We consider a broad sample of possible dispersion measure (DM) values for each source to understand the range of valid sub-burst slope and duration measurements for all bursts and to constrain our results. We find good agreement with an inverse scaling law between the two parameters previously predicted using a simple dynamical relativistic model. The remarkably similar behaviour observed in all sources provides strong evidence that a single and common underlying physical phenomenon is responsible for the emission of signals from these three FRBs, despite their associations with different types of host galaxies at various redshifts. It also opens up the possibility that this sub-burst slope law may be a universal property among repeating FRBs, or indicates a distinct subclass among them.

قيم البحث

اقرأ أيضاً

104 - Shi Dai , Jiguang Lu , Chen Wang 2020
Fast spinning (e.g., sub-second) neutron star with ultra-strong magnetic fields (or so-called magnetar) is one of the promising origins of repeating fast radio bursts (FRBs). Here we discuss circularly polarised emissions produced by propagation effe cts in the magnetosphere of fast spinning magnetars. We argue that the polarisation-limiting region is well beyond the light cylinder, suggesting that wave mode coupling effects are unlikely to produce strong circular polarisation for fast spinning magnetars. Cyclotron absorption could be significant if the secondary plasma density is high. However, high degrees of circular polarisation can only be produced with large asymmetries in electrons and positrons. We draw attention to the non-detection of circular polarisation in current observations of known repeating FRBs. We suggest that the circular polarisation of FRBs could provide key information on their origins and help distinguish different radiation mechanisms.
Repeating fast radio bursts (FRBs) present excellent opportunities to identify FRB progenitors and host environments, as well as decipher the underlying emission mechanism. Detailed studies of repeating FRBs might also hold clues to the origin of FRB s as a population. We aim to detect the first two repeating FRBs: FRB 121102 (R1) and FRB 180814.J0422+73 (R2), and characterise their repeat statistics. We also want to significantly improve the sky localisation of R2. We use the Westerbork Synthesis Radio Telescope to conduct extensive follow-up of these two repeating FRBs. The new phased-array feed system, Apertif, allows covering the entire sky position uncertainty of R2 with fine spatial resolution in one pointing. We characterise the energy distribution and the clustering of detected R1 bursts. We detected 30 bursts from R1. Our measurements indicate a dispersion measure of 563.5(2) pc cm$^{-3}$, suggesting a significant increase in DM over the past few years. We place an upper limit of 8% on the linear polarisation fraction of the brightest burst. We did not detect any bursts from R2. A single power-law might not fit the R1 burst energy distribution across the full energy range or widely separated detections. Our observations provide improved constraints on the clustering of R1 bursts. Our stringent upper limits on the linear polarisation fraction imply a significant depolarisation, either intrinsic to the emission mechanism or caused by the intervening medium, at 1400 MHz that is not observed at higher frequencies. The non-detection of any bursts from R2 implies either a highly clustered nature of the bursts, a steep spectral index, or a combination of both. Alternatively, R2 has turned off completely, either permanently or for an extended period of time.
A bright radio burst was newly discovered in SGR 1935+2154, which exhibit some FRB-like temporal- and frequency-properties, suggesting a neutron star (NS)/magnetar magnetospheric origin of FRBs. We propose an explanation of the temporal- and frequenc y-properties of sub-pulses of repeating FRBs based on the generic geometry within the framework of charged-bunching coherent curvature radiation in the magnetosphere of an NS. The sub-pulses in a radio burst come from bunches of charged particles moving along different magnetic field lines. Their radiation beam sweep across the line of sight at slightly different time, and those radiating at the more curved part tend to be seen earlier and at higher frequency. However, by considering bunches generated at slightly different times, we find there is also a small probability that the emission from the less curved part be seen earlier. We simulate the time--frequency structures by deriving various forms of the electric acceleration field in the magnetosphere. Such structure of sub-pulses is a natural consequence of coherent curvature radiation from an NS magnetosphere with suddenly and violently triggered sparks. We apply this model to explain the time--frequency structure within specific dipolar configuration by invoking the transient pulsar-like sparking from the inner gap of a slowly rotating NS, and have also developed in more generic configurations.
We report on the discovery of FRB 20200120E, a repeating fast radio burst (FRB) with low dispersion measure (DM), detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB project. The source DM of 87.82 pc cm$^{-3}$ is the lowest re corded from an FRB to date, yet is significantly higher than the maximum expected from the Milky Way interstellar medium in this direction (~ 50 pc cm$^{-3}$). We have detected three bursts and one candidate burst from the source over the period 2020 January-November. The baseband voltage data for the event on 2020 January 20 enabled a sky localization of the source to within $simeq$ 14 sq. arcmin (90% confidence). The FRB localization is close to M81, a spiral galaxy at a distance of 3.6 Mpc. The FRB appears on the outskirts of M81 (projected offset $sim$ 20 kpc) but well inside its extended HI and thick disks. We empirically estimate the probability of chance coincidence with M81 to be $< 10^{-2}$. However, we cannot reject a Milky Way halo origin for the FRB. Within the FRB localization region, we find several interesting cataloged M81 sources and a radio point source detected in the Very Large Array Sky Survey (VLASS). We searched for prompt X-ray counterparts in Swift/BAT and Fermi/GBM data, and for two of the FRB 20200120E bursts, we rule out coincident SGR 1806$-$20-like X-ray bursts. Due to the proximity of FRB 20200120E, future follow-up for prompt multi-wavelength counterparts and sub-arcsecond localization could be constraining of proposed FRB models.
The frequency-dependent periodic active window of the fast radio burst FRB 180916.J0158+65 (FRB 180916B) was observed recently. In this Letter, we propose that a Be/X-ray binary (BeXRB) system, which is composed of a neutron star (NS) and a Be star w ith a circumstellar disk, might be the source of a repeating FRB with periodic activities, and apply this model to explain the activity window of FRB 180916B. The interaction between the NS magnetosphere and the accreted material results in evolution of the spin period and the centrifugal force of the NS, leading to the change of the stress in the NS crust. When the stress of the crust reaches the critical value, a starquake occurs and further produces FRBs. The interval between starquakes is estimated to be a few days that is smaller than the active window of FRB 180916B. When the NS moves out of the disk of the Be star, the interval between starquakes becomes much longer than the orbital period, which corresponds to the non-active phase. In this model, due to the absorption of the disk of the Be star, a frequency-dependent active window would appear for the FRBs, which is consistent with the observed properties of FRB 180916B. And the contribution of dispersion measure (DM) from the disk of the Be star is small. In addition, the location of FRB 180916B in the host galaxy is consistent with a BeXRB system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا