ترغب بنشر مسار تعليمي؟ اضغط هنا

Periodic Activities of Repeating Fast Radio Bursts from Be/X-ray Binary Systems

234   0   0.0 ( 0 )
 نشر من قبل Fayin Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The frequency-dependent periodic active window of the fast radio burst FRB 180916.J0158+65 (FRB 180916B) was observed recently. In this Letter, we propose that a Be/X-ray binary (BeXRB) system, which is composed of a neutron star (NS) and a Be star with a circumstellar disk, might be the source of a repeating FRB with periodic activities, and apply this model to explain the activity window of FRB 180916B. The interaction between the NS magnetosphere and the accreted material results in evolution of the spin period and the centrifugal force of the NS, leading to the change of the stress in the NS crust. When the stress of the crust reaches the critical value, a starquake occurs and further produces FRBs. The interval between starquakes is estimated to be a few days that is smaller than the active window of FRB 180916B. When the NS moves out of the disk of the Be star, the interval between starquakes becomes much longer than the orbital period, which corresponds to the non-active phase. In this model, due to the absorption of the disk of the Be star, a frequency-dependent active window would appear for the FRBs, which is consistent with the observed properties of FRB 180916B. And the contribution of dispersion measure (DM) from the disk of the Be star is small. In addition, the location of FRB 180916B in the host galaxy is consistent with a BeXRB system.

قيم البحث

اقرأ أيضاً

462 - Navin Sridhar 2021
The discovery of periodicity in the arrival times of the fast radio bursts (FRBs) poses a challenge to the oft-studied magnetar scenarios. However, models that postulate that FRBs result from magnetized shocks or magnetic reconnection in a relativist ic outflow are not specific to magnetar engines; instead, they require only the impulsive injection of relativistic energy into a dense magnetized medium. Motivated thus, we outline a new scenario in which FRBs are powered by short-lived relativistic outflows (``flares) from accreting black holes or neutron stars, which propagate into the cavity of the pre-existing (``quiescent) jet. In order to reproduce FRB luminosities and rates, we are driven to consider binaries of stellar-mass compact objects undergoing super-Eddington mass-transfer, similar to ultraluminous X-ray (ULX) sources. Indeed, the host galaxies of FRBs, and their spatial offsets within their hosts, show broad similarities with ULXs. Periodicity on timescales of days to years could be attributed to precession (e.g., Lens-Thirring) of the polar accretion funnel, along which the FRB emission is geometrically and relativistically beamed, which sweeps across the observer line of sight. Accounting for the most luminous FRBs via accretion power may require a population of binaries undergoing brief-lived phases of unstable (dynamical-timescale) mass-transfer. This will lead to secular evolution in the properties of some repeating FRBs on timescales of months to years, followed by a transient optical/IR counterpart akin to a luminous red nova, or a more luminous accretion-powered optical/X-ray transient. We encourage targeted FRB searches of known ULX sources.
104 - Shi Dai , Jiguang Lu , Chen Wang 2020
Fast spinning (e.g., sub-second) neutron star with ultra-strong magnetic fields (or so-called magnetar) is one of the promising origins of repeating fast radio bursts (FRBs). Here we discuss circularly polarised emissions produced by propagation effe cts in the magnetosphere of fast spinning magnetars. We argue that the polarisation-limiting region is well beyond the light cylinder, suggesting that wave mode coupling effects are unlikely to produce strong circular polarisation for fast spinning magnetars. Cyclotron absorption could be significant if the secondary plasma density is high. However, high degrees of circular polarisation can only be produced with large asymmetries in electrons and positrons. We draw attention to the non-detection of circular polarisation in current observations of known repeating FRBs. We suggest that the circular polarisation of FRBs could provide key information on their origins and help distinguish different radiation mechanisms.
Repeating fast radio bursts (FRBs) present excellent opportunities to identify FRB progenitors and host environments, as well as decipher the underlying emission mechanism. Detailed studies of repeating FRBs might also hold clues to the origin of FRB s as a population. We aim to detect the first two repeating FRBs: FRB 121102 (R1) and FRB 180814.J0422+73 (R2), and characterise their repeat statistics. We also want to significantly improve the sky localisation of R2. We use the Westerbork Synthesis Radio Telescope to conduct extensive follow-up of these two repeating FRBs. The new phased-array feed system, Apertif, allows covering the entire sky position uncertainty of R2 with fine spatial resolution in one pointing. We characterise the energy distribution and the clustering of detected R1 bursts. We detected 30 bursts from R1. Our measurements indicate a dispersion measure of 563.5(2) pc cm$^{-3}$, suggesting a significant increase in DM over the past few years. We place an upper limit of 8% on the linear polarisation fraction of the brightest burst. We did not detect any bursts from R2. A single power-law might not fit the R1 burst energy distribution across the full energy range or widely separated detections. Our observations provide improved constraints on the clustering of R1 bursts. Our stringent upper limits on the linear polarisation fraction imply a significant depolarisation, either intrinsic to the emission mechanism or caused by the intervening medium, at 1400 MHz that is not observed at higher frequencies. The non-detection of any bursts from R2 implies either a highly clustered nature of the bursts, a steep spectral index, or a combination of both. Alternatively, R2 has turned off completely, either permanently or for an extended period of time.
78 - Matthew Lundy 2021
Fast radio burst (FRBs) are an exciting class of bright, extragalactic, millisecond radio transients. The recent development of large field-of-view (FOV) radio telescopes has caused a rapid rise in the number of identified single burst and repeating FRBs. This has allowed for the extensive multi-wavelength follow-up to search for the potential counterparts predicted by theoretical models. New observations of similar radio transients in Galactic magnetars like SGR 1935+2154 have continued to motivate the search for rapid optical and very-high-energy (VHE, >100 GeV) counterparts. Since 2016 VERITAS has engaged in an FRB observing campaign to search for the prompt optical, and VHE emission from multiple repeating FRBs. We present these new results from VERITAS observations of five repeating sources including data taken simultaneously with bursts observed by the CHIME radio telescope.
A bright radio burst was newly discovered in SGR 1935+2154, which exhibit some FRB-like temporal- and frequency-properties, suggesting a neutron star (NS)/magnetar magnetospheric origin of FRBs. We propose an explanation of the temporal- and frequenc y-properties of sub-pulses of repeating FRBs based on the generic geometry within the framework of charged-bunching coherent curvature radiation in the magnetosphere of an NS. The sub-pulses in a radio burst come from bunches of charged particles moving along different magnetic field lines. Their radiation beam sweep across the line of sight at slightly different time, and those radiating at the more curved part tend to be seen earlier and at higher frequency. However, by considering bunches generated at slightly different times, we find there is also a small probability that the emission from the less curved part be seen earlier. We simulate the time--frequency structures by deriving various forms of the electric acceleration field in the magnetosphere. Such structure of sub-pulses is a natural consequence of coherent curvature radiation from an NS magnetosphere with suddenly and violently triggered sparks. We apply this model to explain the time--frequency structure within specific dipolar configuration by invoking the transient pulsar-like sparking from the inner gap of a slowly rotating NS, and have also developed in more generic configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا