ﻻ يوجد ملخص باللغة العربية
Monitoring of vibrational eigenmodes of an elastic body excited by gravitational waves was one of the first concepts proposed for the detection of gravitational waves. At laboratory scale, these experiments became known as resonant-bar detectors first developed by Joseph Weber in the 1960s. Due to the dimensions of these bars, the targeted signal frequencies were in the kHz range. Weber also pointed out that monitoring of vibrations of Earth or Moon could reveal gravitational waves in the mHz band. His Lunar Surface Gravimeter experiment deployed on the Moon by the Apollo 17 crew had a technical failure rendering the data useless. In this article, we revisit the idea and propose a Lunar Gravitational-Wave Antenna (LGWA). We find that LGWA could become an important partner observatory for joint observations with the space-borne, laser-interferometric detector LISA, and at the same time contribute an independent science case due to LGWAs unique features. Technical challenges need to be overcome for the deployment of the experiment, and development of inertial vibration sensor technology lays out a future path for this exciting detector concept.
We investigate the possibility of observing very small amplitude low frequency solar oscillations with the proposed laser interferometer space antenna (LISA). For frequencies $ u$ below $3times 10^{-4} {rm Hz}$ the dominant contribution is from the n
We describe the design of a gravitational wave timing array, a novel scheme that can be used to search for low-frequency gravitational waves by monitoring continuous gravitational waves at higher frequencies. We show that observations of gravitationa
We discuss the detection of gravitational-wave backgrounds in the context of Bayesian inference and suggest a practical definition of what it means for a signal to be considered stochastic---namely, that the Bayesian evidence favors a stochastic sign
This work describes the operation of a High Frequency Gravitational Wave detector based on a cryogenic Bulk Acoustic Wave (BAW) cavity and reports observation of rare events during 153 days of operation over two seperate experimental runs (Run 1 and
Roughly every 2-10 minutes, a pair of stellar mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest